Conveners
Detector techniques
- Grzegorz Zuzel (Jagiellonian University)
Detectors for direct dark matter search using noble gases in liquid phases as detection medium need to be coupled to liquifying, purifying and recirculation systems.
In the framework of the DarkSide experiment the Proto-0 system, a double phase liquid Argon TPC as reduced scale prototype version of the DarkSide-20k detector, has been built with the aim of the study of the position of the...
The current landscape for the hunt of particle Dark Matter (DM) requires us to achieve state of the art ability to mitigate and account for the various backgrounds. DarkSide-20k, a 20-tonn scale double phase TPC, will commission its voyage for the DM with an exclusion sensitivity to spin-independent WIMP-nucleon interaction of $6.3 \times 10^{-48}$ cm$^2$ (90% C.L.) @ 1 TeV/c$^2$ with a 200 t...
Doping liquid argon with small ( < 0.1% ) concentrations of xenon improves its performance as a detection medium by shifting primary scintillation light to longer wavelengths. At high doping levels, the concentration of xenon in the gas phase is sufficient to modify the electroluminescence chemistry analogously to that of the primary scintillation. However, conventional cryostat and...
Over the past several decades, the dual-phase xenon time projection chamber (TPC) has risen to the forefront of the race to directly detect dark matter (DM). The technology utilizes photomultiplier tubes (PMTs), or other light detection devices, to readout scintillation produced promptly after a particle scatters in the liquid and electroluminescence generated when electrons freed by the...
In the LEGEND experiment, approximately 90 tons (65 $m^3$) of liquid argon (LAr) serve as a cooling medium for the germanium detectors and as an instrumented shielding. To achieve optimal performance of the liquid argon detector system, the LAr was purified by a dedicated system during the cryostat's initial filling. The LEGEND LAr purification System (LLArS) performance was studied and...