Star Cluster Dynamics and Evolution

Geoplanet Doctoral School Lecture Course (Spring 2024) MOCCA

Nicolaus Copernicus Astronomical Center Warsaw, Poland

askar@camk.edu.pl

*** Growing Black Holes in Star Clusters* * * *

Course outline

- Lecture 1: Introduction to star clusters and stellar dynamics
- Lectures 2 4: Collisionless and collisional stellar dynamics
- Lecture 4-5 : Direct N-body and Monte Carlo method for evolving star clusters
- Lecture 6: Thermodynamics of stars clusters and simple star cluster models
- Lecture 7: Internal physical processes in star cluster evolution
- Lecture 8: External physical processes in star cluster evolution
- Lectures 9-10: Observations and astrophysical importance of star clusters
- Lecture 10-11: Black holes in star clusters and formation of gravitational wave sources
- Lecture 12: Summary lecture with key takeaways + instructions on assignment

14th May, 2024

Course outline

- Lecture 1: Introduction to star clusters and stellar dynamics
- Lectures 2 4: Collisionless and collisional stellar dynamics
- Lecture 4-5 : Direct N-body and Monte Carlo method for evolving star clusters
- Lecture 6: Thermodynamics of stars clusters and simple star cluster models
- Lecture 7: Internal physical processes in star cluster evolution
- Lecture 8: External physical processes in star cluster evolution
- Lectures 9-10: Observations and astrophysical importance of star clusters

• Lecture 10-11: Black holes in star clusters and formation of gravitational wave sources

• Lecture 12: Summary lecture with key takeaways + instructions on assignment

14th May, 2024

What happens to stellar-mass black holes in clusters?

- Black hole formation, retention and growth within stellar clusters
- Role black holes play in cluster evolution
- Formation of gravitational wave sources in globular clusters

Image Credit: ESA/Hubble, N. Bartmann

Stellar evolution in a nutshell

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

Credit: Thomas Tauris

Stellar evolution in a nutshell: Black hole formation

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

BH progenitors

 $M_{ZAMS} \gtrsim 18 - 20 M_{\odot}$

Evolution time (~ few Myr to 30 Myr)

aunuclear $\propto M^{-2.5}$

Credit: Thomas Tauris

Black hole formation: supernova models and remnant masses

- built up in its center.
- Energy is released when smaller nuclei fuse
- Neutrons and protons are more bound in larger nuclei:
- drops

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

• Massive stars go through a series of burning phases, fusing the ashes of previous burning phases until a core of iron is

Iron has maximum binding energy: no more energy released by fusion \rightarrow stellar core starts collapsing because pressure

14th May, 2024

Death of a massive star: core collapse supernova

How this energy is converted into explosion energy is still an active area of research!

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar Geoplanet Doctoral School - PhD Lecture Course

The collapse of a stellar core releases up to 10^{53} erg of gravitational potential energy

Black hole formation: supernova models and remnant masses

- Convective engine: Potential energy is converted into thermal energy (mostly thermal energy of neutrinos) and core bounces driving shocks
- Shocks must reverse collapse of outer layers
- Star cannot explode if the binding energy of the envelope is larger than the SN energy
- Depends on energy released in the supernova, the mass and radius of the envelope of the evolved star
- Supernova outcome depends on the 'fallback' of the outer layers
- How much material falls back on to the collapsing core after the supernova

Foglizzo et al. 2015

14th May, 2024

Black hole formation: supernova models and remnant masses

- Star cannot explode if the binding energy of the envelope is larger than the SN energy
- Depends on energy released in the supernova, the mass and radius of the envelope of the evolved star
- Supernova outcome depends on the 'fallback' of the outer layers
- How much material falls back on to the collapsing core after the supernova

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

Extremely uncertain! Depends on: - explosion energy - progenitor's mass and metallicity

Foglizzo et al. 2015

From Heger et al. 2003 (also see Belczynski et al. 2002)

14th May, 2024

2017, Giacobbo et al. 2

• Final black hole depends on initial mass, metallicity, winds, supernova model (Belczynski et al. 2016, Spera & Mapelli

Belczynski et al. 2010

Black hole formation and pair instability supernova

2017, Giacobbo et al. 2018)

Belczynski et al. 2010

• Final black hole depends on initial mass, metallicity, winds, supernova model (Belczynski et al. 2016, Spera & Mapelli

- If a star is very massive and hot it can produce γ -ray photons in its core
- γ -ray photons scattering with atomic nuclei results in pair-pair production: $\gamma \rightarrow e^- + e^+$
- Missing pressure from γ -ray photons results in collapse of the core during oxygen burning
- High temperatures in the core can ignite remaining material resulting in an explosion that can leave no remnant
- Or strong mass loss due to pulsations (pulsation pair instability supernova)

Image Credit: Lucy Reading-Ikkanda/Quanta Magazine

2017, Giacobbo et al. 2018)

Belczynski et al. 2010

• Final black hole depends on initial mass, metallicity, winds, supernova model (Belczynski et al. 2016, Spera & Mapelli

Belczynski et al. 2016

2017, Giacobbo et al. 2018)

Spera & Mapelli (2017) - without pair and pulsation pair instability supernova

• Final black hole depends on initial mass, metallicity, winds, supernova model (Belczynski et al. 2016, Spera & Mapelli

2017, Giacobbo et al. 2018)

• Final black hole depends on initial mass, metallicity, winds, supernova model (Belczynski et al. 2016, Spera & Mapelli

Spera & Mapelli (2017) - with pair and pulsation pair instability supernova

Black hole formation and retention in globular clusters

 $M_{ZAMS} \gtrsim 18 - 20 M_{\odot}$

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

Salpeter (1955) pure power law Kroupa (2001) Multiple power law segments Charbier (2003) Power law + log

normal

Black hole formation and retention in globular clusters

- Evolution Time: 4 30 Myrs

 $M_{ZAMS} \gtrsim 18 - 20 M_{\odot}$

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

• ~ 2 black holes for every 1000 stars (typical IMF, $\alpha = 2.3$)

Black hole formation and retention in globular clusters

- Core-collapse SN \rightarrow asymmetric mass ejection and/or neutrino emission \rightarrow Natal kicks as high as for neutron stars? \rightarrow 200 – 500 km/s up to 1000 km/s (see page 165 in course textbook) (Repetto et al. 2012; Janka 2013, 2017, Observations: Mirabel et al. 2002, Hobbs et al. 2005)
- Mass Fallback (Failed SN)/Direct Collapse → Low natal kicks/no kicks? (Fryer 1999, Heger et al. 2002, Belczynski et Allan et al. 2020)
- **Momentum conservation and/or Fallback** \rightarrow kicks scaled down linearly with BH Mass \rightarrow Final BH Mass depends on initial mass, metallicity, winds, supernova model (Belczynski et al. 2016, Spera & Mapelli 2017, Giacobbo et al. 2018)

al. 2002, 2010, Fryer et al. 2012, Mandel 2016, Amaro-Seoane & Chen 2015 Observations: Reynolds et al. 2015, Adams et al. 2016,

Dependence of black hole retention in globular clusters on natal kicks

N = 700,000Initial binary fraction (IBF) = 10% Z = 0.05 Z_☉ $r_h = 4.8 \text{ pc}, r_t = 120 \text{ pc}, V_{esc} = 33 \text{ km/s}$ $0.08 \text{ M}_{\odot} \leq M_{ZAMS} \leq 100 \text{ M}_{\odot}$ (Kroupa 2001 IMF) Belczynski et al. 2002 (for BH masses) Number of BH progenitors ~ 1900

2 cases (N = 700,000):

- 1. Neutron star kicks (Hobbs et al. 2005) for black holes
- Black hole kicks scaled by fallback 2. (Belczynski et al. 2002) and momentum conservation

Dependence of black hole retention in globular clusters on natal kicks

Retention fraction and mass function of stellar-mass BHs

- Retention fraction (number of retained black holes/number of all BH progenitors) of stellar-mass BHs depends on natal kicks that they receive
 - Highly uncertain
- Mass function of retained black holes depends on the evolution and properties of the progenitors
 - Initial ZAMS masses and metallicities
 - Mass loss due to stellar winds
 - Supernova mechanism \rightarrow fallback or no fallback
 - Highly uncertain
- Binarity of massive stars can also affect BH mass function

Spera et al. 2018

Recall from lecture 7: Binary evolution processes \rightarrow mass transfer, common envelope evolution

Multiplicity of massive stars

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

Offner et al. 2023: <u>https://arxiv.org/abs/2203.10066</u>

Observed binary fraction in globular clusters

Observed binary fraction ($\frac{N_{bin}}{N_{single} + N_{bin}}$ of

most Galactic globular clusters ranges from a few to up to ~20%

- Few clusters like Arp 2 have a high presentday binary fraction of 70%
- Spectroscopic identification of binaries in NGC 3201 (Giesers et al. 2019)
 - binary fraction in the core of 6.75%
- Birth binary fraction could be significantly larger than present-day binary fraction (Kroupa 1995; Leigh et al. 2015; Belloni et al. 2018)

What happens to retained black holes in star clusters?

Old Theoretical Picture

Black holes should not be observed in old globular clusters!

Observations of stellar-mass black holes in globular clusters

Type of Black Holes (BHs)	Observational Method	
Accreting BHs in Binary Systems	X-ray/Radio Observations	 2 candidat 1 candidat Ultracomp al. 2017) BH-Red Stu 2018) ULXs obse 4472 (Mac
Detached BHs in Binaries with a Luminous Companion	Radial Velocity Measurement	 3 detected 2018; 2019 <i>M</i> sin <i>i</i> = 7.68 ±
Isolated BHs	Gravitational Microlensing	 VVV Survey 2015) - Und

Observations

es in M22 (Strader et al. 2012) e in M62 (Chomiuk et al. 2013) bact BH-WD binary in 47 Tuc (Bahramian et

raggler binary in M10 (Shishkovsky et al.

rved in a GC in the elliptical galaxy NGC carone et al. 2007)

using MUSE in NGC 3201 (Giesers et al. $\pm 0.50 \text{ M}_{\odot}, 4.40 \pm 2.8 \text{ M}_{\odot} \text{ and } 4.531 \pm 0.21 \text{ M}_{\odot}$

y: BH candidate in NGC 6553? (Minniti et al. certain

2 BH candidates in M22 (Strader et al. 2012)

NGC 3201

Long-term survival of black holes in globular clusters

Credit: Breen & Heggie (2013)

Black hole dynamics in globular clusters

- Black holes segregate to the center of the cluster \rightarrow interact with each other and surrounding stars
- Chaotic binary-single and binary-binary interactions involving black holes
- Formation of binary black holes through exchange encounters

 Shrinking of binary black holes through interactions → can merge due to gravitational wave radiation within a Hubble time (more in next part of the lecture)

$$\tau_{\rm gr} \simeq 10^{10} yr \left(\frac{a_{\rm bin}}{3.3R_{\odot}}\right)^4 \frac{1}{(m_1 + m_2)m_1m_2} \cdot \left(1 - e^2\right)^{7/2}$$
 (Pet

3-body encounters in stellar clusters

- For a bound binary system: $E_{int} = -\frac{G m_1 m_2}{2 a} = -E_b$
- Binary shrinking/hardening:
- Single star extracts internal energy of the binary (stars final kinetic energy is higher than initial) - Flyby
- Binary softening or lonization:
- Single star transfers kinetic to the binary
- Exchange interaction:
 - Single star can replace one of the binary companions

Heggie/Hill's (1975) Law: In 3-body encounters hard binaries become harder and soft binaries tend to become softer

Credit: Michela Mapelli Lecture notes on Collisional Dynamics

Black hole dynamics in globular clusters

- Dynamical interactions also eject tight binary black holes out of the cluster due to dynamical recoil (scattering kick)
- Black hole population in clusters depletes with time \rightarrow depletion time depends on cluster initial properties
 - Black holes heat surrounding stars (Mackey et al. 2007;2008, Breen & Heggie 2013)
 - Initially dense clusters \rightarrow more interactions \rightarrow faster depletion of black holes
 - Less dense clusters \rightarrow fewer interactions \rightarrow slower depletion of black holes
- Initially dense clusters \rightarrow have shorter initial 2-body relaxation times \rightarrow dynamically older \rightarrow important for producing binary black holes (next part of the lecture)

Credit: Breen & Heggie (2013)

