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General Picture of Evolution

A star cluster evolves thanks to the relaxation process - uncorrelated, very distant
gravitational interactions of stars with all other stars in the system. Relaxation alters the
energy E and angular momentum A of each star. The time scale of the system evolution is
proportional to the half-mass relaxation time: trh = 0.138N1/2R3/2

h /(m1/2G1/2ln(γN))
System regains equilibrium because Phase Mixing and Violent Relaxation on the crossing
time scale: tcr ∼ trh ln(N)/N

Evolution proceeds through a sequence of slowly changing equilibrium states described
by viral equilibrium: E = T + W, where E is system binding energy and T and W are
system kinetic and potential energies, respectively.

What will be the evolution of the system when it loses mass ∆M < 0 or kinetic energy
∆T < 0?

Rn = R(1 − ∆M
M ) – R increasing! Rn = R(1 − 2∆T

W ) – R decreasing!

V2
n = V2(1 + 2∆M

M ) – V decreasing! V2
n = V2(1 − ∆T

T ) – V increasing!

NEGATIVE HEAT CAPACITY
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Gravothermal Catastrophe

We know from the previous Lectures that kinetic energy of the self-gravitating stellar
system can be computed in similar way as for gas: K = 0.5Nm < σ2 >= 1.5NkT where
σ2 = 3kT/m.
So the specific heat capacity is equal: dE/dT = cv = −1.5kN

Let’s consider a gravitating isothermal gas confined by a sphere of radius, re, just less than
rA = 0.335GM2/(−E) (critical radius) and adiabatically expand the sphere. Work is done
by the gas so E becomes more negative and rA contract, re > rA. The central parts are
held in primarily by gravity so they expand less than the outer parts. Thus the adiabatic fall
in temperature of the outer parts due to their expansion will initially be greater than the
temperature fall of the inner parts. So a temperature gradient develops. The central parts
contract and get hotter while the outer parts held in by the sphere behave like a normal
gas so get hotter too. Do the outer parts get hotter faster than the inner one? Clearly if the
outer parts have too great a positive heat capacity they will not respond enough and the
inner parts will run away to ever higher temperatures losing more and more heat to the
sluggishly responding outer parts. This is Antonov’s gravothermal catastrophe.
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Gravothermal Catastrophe

Antonov 1966
Lynden-Bell and Wood (1968) Lynden-Bell (1968)
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Gravothermal Catastrophe
Two negative cv systems in thermal contact do not attain thermal equilibrium - one
gets hotter and hotter by losing energy, the other gets colder by gaining energy
A negative cv system can not achieve thermal equilibrium with a large heat bath. Any
fluctuation that, e.g., makes it temporary energy too high will make its temporary
temperature too low and the heat flow into it will drive it to even lower temperatures
and higher energies.
A negative cv system can achieve a stable equilibrium in contact with a positive cv

system provided that their combined heat capacity is negative.
Assume that the negative cv system Minus is initially a little hotter than the positive cv

system Plus. Then heat will flow from Minus to Plus. On losing heat Minus will get
hotter but on gaining that heat Plus will also get hotter. However, because Plus has a
smaller absolute cv value its temperature is more responsive to heat gain than Minus
is to heat loss. Thus Plus will gain temperature faster than Minus and a thermal
equilibrium will be attained with both.
This stability is lost as soon as positive cv has the same absolute cv value as negative
cv; i.e., when their combined heat capacity reaches zero from below.
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General Picture of Evolution

I would like to spend the next several minutes presenting a global picture of the cluster’s
evolution, a picture that will be derived from the knowledge gained so far on cluster
models, relaxation and gravitational collapse, namely:

Star systems collapse if the density gradient between the center and characteristic
radius is greater than about 709
Star systems are close to isothermal - the velocity dispersion gradient is small in a
significant part of the cluster, which contains a significant part of its mass
According to the virial theorem rh ∼ GM2/|E|
The relaxation process does not change the total energy of the cluster, but it does
change its redistribution among the stars
Some stars will gain enough energy end escape from the cluster. The escape rate is
constant per half-mass relaxation time end it is equal to 0.0074 for the isothermal
model
So the cluster dissolution time is proportional to the half-mass relaxation time -

t − tcoll ∼
M1/2r3/2

h
G1/2mln(∧)
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General Picture of Evolution - Core Collapse

In 1975, Henon provided a theoretical argument that made it possible to break the
deadlock in theoretical models of cluster evolution after its "collapse." The
argument goes as follows: the rate of energy generated in the cluster’s central
regions (regardless of the physical process) must match the rate of energy flow
through the cluster’s half-mass radius

This argument will be used a lot in the rest of the lecture

We know that the rate of mass loss from star clusters is very small, and that the relaxation
process does not change the total energy of the cluster, but only redistributes energy and
angular momentum among the stars in the system. Then according the virial theorem the
cluster characteristic radius should be constant (rh ∝ GM2/|E|)

rh = cost during the cluster collapse
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General Picture of Evolution - Core Collapse

Lynden-Bell 1968

Let’s assume that the system is undergoing the gravothermal catastrophe with the central
part contracting and getting hotter while the outer part could not raise its temperature fast
enough to keep up. Since the center is now denser the critical point for the gravothermal
instability is now inside the system rather than at its edge. Thus this point moves inwards
through the mass. As the density increases, the timescale of heat flow becomes shorter
and the outer system regions are too slow to respond other than adiabatically. Since the
same process is occurring at ever smaller scales we expect a similarity solution with the
density of the form:

ϱ(r, t) = ϱc(t)ϱ⋆(r⋆) where r⋆ =
r

rc(t)
(1)

Since the halo is so slow that it is left behind in the every quickening evolution of the
center we can put ∂ϱ/∂t = 0 for large distance
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General Picture of Evolution - Core Collapse

Differentiating over time Eq.(1) we get:

ϱ̇cϱ⋆ −
ṙc

rc
ϱcϱ

′
⋆ = 0

So for large r after separating t and r⋆ me have

r⋆ϱ′⋆
ϱ⋆

=
rcϱ̇c

ṙcϱc
= −α

Thus ϱ⋆ = Ar−α
⋆ at large r⋆ and ϱc ∝ r−α

c for all t

ϱ̇c

ϱc
=

1
trc

where t−1
rc =

ϱc

v3
c
(4πG2m ln(N)) v2

c ∝ G
4
3
πϱcr3

c

rc
∝ Gϱ

1− 2
α

c v2
c ∝ r(2−α)

c

ϱ̇c

ϱc
= ϱ

3
α− 1

2
c
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General Picture of Evolution - Core Collapse

After integrating over time equations for ϱc and
vc we get:

ϱc ∝ |tcoll − t|
2α

6−α rc ∝ |tcoll − t|
2

6−α

Mc ∝ ϱcr3
c ∝ |tcoll − t|

2(3−α)
6−α

v2
c ∝ GM

rc
∝ |tcoll − t|

(4−2α)
6−α

The collapse of the core is driven by a negative
temperature gradient it follows that α > 2

The energy within the core has to be finite
during collapse - ϱcr3

c v2
c ∝ r5−2α

c so 2 < α < 2.5

Numerical simulations give: α ∼= 2.21 − 2.23

Credits: Cohn 1980
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General Picture of Evolution - Core Expansion

Of course, a gravitational collapse cannot lead to infinite densities in an actual star
system. Much sooner, processes related to strong gravitational interactions between stars
and to the finite size of stars will turn on. These processes have so far been neglected in
the description of cluster evolution. Let’s first consider the process of formation of binary
systems

One note of caution before we move on. Binary systems in dynamic interactions generate
extra kinetic energy at the expense of the binary system’s binding energy. This is
"external" energy to the cluster’s binding energy. A decrease in the cluster’s binding
energy will result in an increase in the cluster’s half radius.

t − to ∼ M1/2r3/2
h

G1/2mln(∧)

For constant cluster mass rh(t) = rh(o)(t − to)2/3

Taking into account mass loss from the system in the form M(t) = M(o)(t − to)ν we get
rh(t) = rh(o)(t − to)(2+ν)/3, ν ∼ 0.08

The system expansion is self-similar - Henon 1961, 1965
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General Picture of Evolution - Core Expansion

Three-Body Binary Formation

The cross section for a collision between a star and a binary with a semi-major axis is:
σ = πa2(1 + 2GM123/aV2) ≈ 2πGM123a/V2 - for hard binaries a < Gm/v2

The rate at which a given star encounters another at the distance "a" is of order G2m2n/v3,
where n is the number of stars per unit volume

The probability that a third star is within this volume (of order a3) at the same time is of
order na3, and so the rate of formation of triple systems involving a given star is of order
G5m5n2/v9

Since there are n stars per unit volume, the rate is of order G5m5n3/v9

Ṅb =
105G5m5n3

v9 Goodman and Hut (1993)
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General Picture of Evolution - Core Bounce

Hard binaries become harder and soft binaries become softer

Soft binary when its binding energy is smaller than the average kinetic energy of
neighboring stars.
Hard binary when its binding energy is greater than the average kinetic energy of
neighboring stars.

The energy added to the core (per binary) may be only of order a few times the mean
kinetic energy of one core member, i.e. of order a few times mv2

c . So the energy rate
generated by binaries per unit volume is: ε ∝ G5m6n3/v7

c

ε = Ė =
4200G5m3ϱ3

v7 Cohn (1985)

By comparing the change in the kinetic energy of the core with the energy generated by
binaries, we can get a limit on the number of stars in the core when the energy generated
by binaries becomes dominant.

The number is about 50 - 80. For unequal masses 25
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General Picture of Evolution - Core Expansion
The flux of energy from the core is given by ε = G5m6n3r3/v7 and in steady expansion must
be comparable with the flux at rh, which is of order ∝ |E|/trh

Assuming that the velocity dispersion v2 does not vary much inside rh - system is nearly
isothermal. We get the following relation: G2m2ρ3

cr3
c rh ∼ M2v4ρh ln(N) and using relation for

the core radius Gρcr2
c ∼ v2 ( m

M

)2 ρc

ρh

rh

rc

1
ln(N)

∼ 1

For the nearly isothermal sphere ρ ∝ r−2. Neglecting the Coulomb logarithm dependence
on N we get rh/rc ∝ N2/3

Since the mass inside a given radius is nearly proportional to r in an isothermal model, it
follows also that the number of stars inside the core in this post-collapse expansion varies
as Nc ∝ N1/3 and number of binaries as Nb ∝ N−1/3 (Goodman 1984)

For post-collapse evolution driven by the energy generated by three-body binaries,
the number of stars in the core is small - a few dozens. Also, the number of binaries
in the nucleus is small, on the order of 1

Mirek Giersz and Abbas Askar Evolution of Star Clusters - Basic Considerations and Simple Models Lecture V



MOCCA

General Picture of Evolution - Gravothermal Oscillations

A short summary of what we have learned so far
Gravothermal collapse is self-similar and is consequence of the negative heat
capacity for self-gravitating systems
The energy released during the core collapse is balanced by energy flow through the
half-mass radius
The central parts of the system have to be nearly isothermal. The central relaxation
time is orders of magnitude smaller than the half-mass relaxation time
The collapse proceed until central density is large enough to form binaries. Binaries
start to supply energy needed to sustain energy flow through half-mass radius -
Number of stars in the core is about few dozens and is independent on N

The evolution during post-collapse is self-similar and number of stars in the core is
proportional to Nc ∝ N1/3, which is larger number than at the core bounce time
The energy generation in the core is self-regulated
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General Picture of Evolution - Gravothermal Oscillations

The structure of the system after the core bounce is nearly isothermal central part with
large density gradient between the center and half-mass radius

We know from the description of the gravothermal collapse that such configuration is
unstable

The process of energy generation in the core is self-regulating - The larger energy
generation the larger core expansion and consequently the smaller energy generation.
Conversely, when energy generation is too small

The energy generation by binaries is strongly stochastic and as it was pointed out by
Sugimoto and Bettwieser (1983, 1984) such system should be unstable not smoothly
expanding

At the end of core bounce the core is producing enough energy to halt the collapse, and
this is too much for the subsequent expansion of the cluster as a whole. Therefore the
thermal energy generated builds up in and around the core faster than it can be conducted
away. This causes an expansion and cooling of the core and its immediate surroundings
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General Picture of Evolution - Gravothermal Oscillations

If core collapse is sufficiently deep, which
simply requires sufficiently large N, the
expanding core can actually cool to
temperatures below that of its surroundings. At
this point there is a temperature inversion, i.e.
there is a range of radii in which the
temperature increases outwards
In this region the thermal flux is actually
inwards. This flux enhances the expansion of
the core and its cooling
It is the gravothermal instability again, this time
working in reverse. Eventually, however, the
expanding core comes in thermal contact with
the cooler parts of the cluster around rh. Now
the heat generated in the core can flow out as
required, and the temperature inversion
disappears. Again system start to collapse

Credit: Heggie et al. (1994)

The strength of system instability depends
strongly on N. The larger N the gravothermal
oscillations are more chaotic. Limiting N = 8000
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General Picture of Evolution - Gravothermal Oscillations

Credit: Heggie and Ramamani (1989)

N=6000, 8000, 10000, 50000

The collapse is more-or-less like
the first core collapse: the core
overshoots, it is too dense, creates
too much energy, and a
temperature inversion, and the
cycle starts again.

Gravothermal oscillations were
confirmed in many types of single
mass star cluster simulations:
gaseous, Fokker-Planck, N-body
and Monte Carlo
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General Picture of Evolution - Black Hole Subsystem

Let’s consider two-component system of mass M1 and M2 with individual stellar masses
m1 and m2. M2 ≪ M1 and m2 > m1

Massive component (black holes, BH) will mass segregate, form massive binaries and
start to generate energy in binary interactions
The energy exchange between massive and light components has to balance the energy
flow through the half-mass radius: E/trh = Ėex

The flax generated by BHS is E2/trh2 and mus be equal to the energy exchange between
light and massive components

E
E2

∼ trh

trh2

So
trh

trh2
≈

M1/2r3/2
h m2 ln∧2

M1/2
2 r3/2

h2 m ln∧
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General Picture of Evolution - Black Hole Subsystem

Credit: Breen and Heggie (2013) According to the virial theorem
system absolute value of energy is
equal to the system kinetic energy

|E|
|E2|

≈ Mv2

M2v2
2
≈ M2rh2

M2
2rh

Finally we get

rh2

rh
∼ M3/5

2 m2/5
2 (ln∧2)

2/5

M3/5m2/5(ln∧)2/5
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General Picture of Evolution

Credit: Murphy et al. (1989) Breeden et al. (1994)
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General Picture of Evolution

Giersz (1998) (Monte Carlo) Giersz + (2019)
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N=400000, Rt=60 pc, Rh=2.4 pc, binary fraction = 0.95
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