Star Cluster Dynamics and Evolution

Geoplanet Doctoral School Lecture Course (Spring 2024) MOCCA

Nicolaus Copernicus Astronomical Center Warsaw, Poland

askar@camk.edu.pl

*** Growing Black Holes in Star Clusters* * * *

The equations of motion to be integrated are

$$\ddot{\mathbf{r}}_i = -G\sum_{j=1,
eq i}^N m_j rac{\mathbf{r}_i - \mathbf{r}_j}{\left|\mathbf{r}_i - \mathbf{r}_j
ight|^3}$$

These can be written in the equivalent form

$$egin{aligned} \dot{\mathbf{r}}_i &= \mathbf{v}_i \ \dot{\mathbf{v}}_i &= \mathbf{a}_i &= -\sum_{j=1, j
eq i}^N Gm_j rac{\mathbf{r}_i - \mathbf{r}_j}{\left|\mathbf{r}_i - \mathbf{r}_j
ight|^3} \end{aligned}$$

where \mathbf{r}_i , \mathbf{v}_i are the position and velocity of the *i* th particle.

• To solve the ordinary differential equations (2 coupled ODEs)

• Accurate time integration of close encounters is the most difficult part of collisional Nbody methods

For collisionless N-body methods force softening alleviates this problem substantially.

9th April, 2024

Recap: Implementation of direct N-body codes for collisional dynamics

• Direct summation *N*-body approach; "brute force"

- NBODYX series of codes: <u>https://</u> people.ast.cam.ac.uk/~sverre/web/pages/ <u>nbody.htm</u> (Aarseth 2003)
- NBODY6++GPU (Wang, Spurzem et al. 2015; 2016): https://github.com/nbody6ppgpu

Integration Scheme:

- Since close encounters and interactions between stars are important in star clusters \rightarrow integrator must be high accuracy even on short times scales \rightarrow 4th order accuracy
- Expand Taylor series solution for the position and velocities to fourth order in an interval \rightarrow Hermite $\mathbf{r}_{i}(t+\Delta t) = \mathbf{r}_{i}(t) + \Delta t \mathbf{v}_{i}(t) + \frac{1}{2}(\Delta t)^{2}\mathbf{a}_{i}(t) + \frac{1}{6}(\Delta t)^{3}\mathbf{j}_{i}(t) + \dots$ integrator

Euler method Algorithm:

$$r(t + \Delta t) = r(t) + v(t)\Delta t$$
$$v(t + \Delta t) = v(t) + a(t)\Delta t$$

Leapfrog algorithm

$$v\left(t + \frac{\Delta t}{2}\right) = v(t) + a(t)\frac{\Delta t}{2}$$
$$r(t + \Delta t) = r(t) + v(t)\Delta t + \frac{1}{2}a(t)\Delta t^{2}$$

$$v(t + \Delta t) = v\left(t + \frac{\Delta t}{2}\right) + a(t + \Delta t)\frac{\Delta t}{2}$$

New position is calculated using an extra term proportional to Δt^2

Velocity updated in 2 steps - first half of the time step is taken using the current acceleration and second is taken using the new acceleration

Recap: Hermite Integration: 4th order predictor-corrector

- The algorithm consists of a prediction step: $r_p = r(t) + v(t)\Delta t + \frac{1}{2}a(t)\Delta t^2 + \frac{1}{6}j(t)\Delta t^3$ $v_p = v(t) + a(t)\Delta t + \frac{1}{2}j(t)\Delta t^2$ Taylor series evaluation
- a correction step that makes use of the init coordinates and the predicted coordinates

$$r(t + \Delta t) = r(t) + \frac{1}{2} \left(v(t) + v_p \right) \Delta t + \frac{1}{12} \left(a(t) - a_p \right) \Delta t^2$$
$$v(t + \Delta t) = v(t) + \frac{1}{2} \left(a(t) + a_p \right) \Delta t + \frac{1}{12} \left(j(t) - j_p \right) \Delta t^2$$

- j(t) is the jerk which is the time derivative of the acceleration
- a_p is the acceleration calculated using the predicted positions

Calculating the Jerk:

$$\mathbf{a}_{i} = -G \sum_{j=1,\neq i}^{N} m_{j} \frac{\mathbf{r}_{i} - \mathbf{r}_{j}}{\left| \mathbf{r}_{i} - \mathbf{r}_{j} \right|^{3}}$$

tial
$$\mathbf{j}_{i} \equiv \dot{\mathbf{a}}_{i} = -G \sum_{j=1,\neq i}^{N} m_{j} \left(\frac{\mathbf{v}_{i} - \mathbf{v}_{j}}{\left| \mathbf{r}_{i} - \mathbf{r}_{j} \right|^{3}} - 3 \frac{\left(\mathbf{v}_{i} - \mathbf{v}_{j} \right) \cdot \left(\mathbf{r}_{i} - \mathbf{r}_{j} \right)}{\left| \mathbf{r}_{i} - \mathbf{r}_{j} \right|^{5}} \left(\mathbf{r}_{i} - \mathbf{r}_{j} \right)$$

9th April, 2024

Recap: Hermite Integration: 4th order predictor-corrector

The algorithm consists of a prediction step:

$$r_{p} = r(t) + v(t)\Delta t + \frac{1}{2}a(t)\Delta t^{2} + \frac{1}{6}j(t)\Delta t^{3}$$

Taylor series evaluation

$$v_p = v(t) + a(t)\Delta t + \frac{1}{2}j(t)\Delta t$$

a correction ste

coordinates and

 $r(t + \Delta t) = r(t) + \frac{1}{2}\left(v(t)\right)$

 $v(t + \Delta t) = v(t) + \frac{1}{2}\left(at\right)$

4th order Hermite predictor-corrector scheme is 3 step:

- **1.** predictor step: predicts positions and velocities at 3rd order
- 2. calculation step: calculates acceleration and jerk for the predicted positions and velocities
- **3.** corrector step: corrects positions and velocities using the acceleration and jerk calculated in 2

- j(t) is the jerk which is the time derivative of the acceleration
- a_p is the acceleration calculated using the predicted positions

Calculating the Jerk:

$$\mathbf{a}_{i} = -G \sum_{j=1,\neq i}^{N} m_{j} \frac{\mathbf{r}_{i} - \mathbf{r}_{j}}{\left| \mathbf{r}_{i} - \mathbf{r}_{j} \right|^{3}}$$

$$\frac{\left|\mathbf{r}_{i}-\mathbf{v}_{j}\right)\cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}{\left|\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{5}}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\right|^{5}}$$

erpolation which e higher accelerating ther Taylor series

Incr. Instead of Joing more derivatives

of jerk, use derivative of predicted values

9th April, 2024

Recap: Basic structure of an N-body code

- 1. Initialisation of \mathbf{r}_i , \mathbf{v}_i , tnext i (update time $t_i + \Delta t_i$), \mathbf{a}_i , $\dot{\mathbf{a}}_i$ for all I
- 2. Choose *i* minimising tnext *i*
- 3. Extrapolate all r_i , v_i to the transformation to the transformation of transf
- 4. Compute new \mathbf{a}_i , $\dot{\mathbf{a}}_i$ (Predictor step)
- 5. Correct new \mathbf{r}_i , \mathbf{v}_i (Hermite integrator)
- 6. Compute new tnext *i*

Note: This is the basic structure of NBODY6, except for the absence of block time steps

- 1. Initialisation of \mathbf{r}_i , \mathbf{v}_i , tnext i (update time $t_i + \Delta t_i$), \mathbf{a}_i , $\dot{\mathbf{a}}_i$ for all I
- 2. Choose *i* minimising tnext *i*
- 3. Extrapolate all r_i , v_i to the transformation to the transformation of transf
- 4. Compute new \mathbf{a}_i , $\dot{\mathbf{a}}_i$ (Predictor step)
- 5. Correct new \mathbf{r}_i , \mathbf{v}_i (Hermite integrator)
- 6. Compute new tnext *i*

$$\Delta t_i = \eta \frac{a_i}{j_i}$$

- Time step issues:
 - Same time step for all particles?
 - Expensive because a few particles undergo close encounters \rightarrow force changes more rapidly for them
 - Ideally:
 - Longer time steps for 'unperturbed' particles
 - Shorter for particles that undergo close encounters
 - Different Δt_i for each particle is expensive and systems lose coherence
 - Block time step scheme: group particles by replacing their individual time steps such that $t/\Delta t_{i,b}$ is an integer (good for synchronization):

Group together particles which have very similar update times. The extrapolation is shared among them.

Check out Aarseth, Tout & Mardling (eds): *The Cambridge N-Body Lectures (2008) for details*

1. Initialisation of \mathbf{r}_i , \mathbf{v}_i , tnext i (update time $t_i + \Delta t_i$), \mathbf{a}_i , $\dot{\mathbf{a}}_i$ for all 1

Figure 9.1: Block time steps exemplary for four particles.

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar Geoplanet Doctoral School - PhD Lecture Course

$$\Delta t_i = \eta \frac{a_i}{j_i}$$

Time step issues:

- Expensive because a few particles undergo close encounters \rightarrow force changes more rapidly for them
- Ideally:
 - Longer time steps for 'unperturbed' particles
 - Shorter for particles that undergo close encounters
 - Different Δt_i for each particle is expensive and systems lose coherence

Group together particles which have very similar update times. The extrapolation is shared among them.

Check out Aarseth, Tout & Mardling (eds): *The Cambridge N-Body Lectures (*2008) for details + NBODY6++GPU Manual

Figure 10.1: Illustration of the neighbour scheme for particle *i* marked as the asterisk (after [2]).

Figure 10.2: Regular and irregular time steps (after [22]).

From NBODY6++GPU Manual

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar Geoplanet Doctoral School - PhD Lecture Course

- Neighbour Scheme (Ahmad & Cohen 1973)
 - Time step determined by nearest neighbour
 - Few near neighbours \rightarrow force due to them can be computed frequently with little effort (the "irregular force")
- force due to the more numerous nonneighbours (the "regular force") fluctuates more slowly, and can be computed with a longer time step
- Requires keeping a list of neighbours

Check out Aarseth, Tout & Mardling (eds): *The Cambridge N-Body Lectures* (2008) for details + NBODY6++GPU Manual

Figure 10.1: Illustration of the neighbour scheme for particle *i* marked as the asterisk (after [2]).

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

- Neighbour Scheme (Ahmad & Cohen 1973)
 - Time step determined by nearest neighbour
 - Few near neighbours \rightarrow force due to them can be computed frequently with little effort (the "irregular force")
 - force due to the more numerous nonneighbours (the "regular force") fluctuates more slowly, and can be computed with a

The **irregular forces** are those fast-changing forces from nearby particles inside the neighbour sphere $\mathbf{a}_i = \mathbf{a}_i$ irr $+ \mathbf{a}_i$ reg

The **regular forces** are from the distant particles outside of the neighbour sphere, which change more slowly

Figure 10.1: Illustration of the neighbour scheme for particle *i* marked as the asterisk (after [2]).

Figure 10.2: Regular and irregular time steps (after [22]).

From NBODY6++GPU Manual

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar Geoplanet Doctoral School - PhD Lecture Course

- Neighbour Scheme (Ahmad & Cohen 1973)
 - Time step determined by nearest neighbour
 - Few near neighbours \rightarrow force due to them can be computed frequently with little effort (the "irregular force")
- force due to the more numerous nonneighbours (the "regular force") fluctuates more slowly, and can be computed with a longer time step
- Requires keeping a list of neighbours

Check out Aarseth, Tout & Mardling (eds): *The Cambridge N-Body Lectures* (2008) for details + NBODY6++GPU Manual

Summary: Neighbour scheme and hierarchical time-step scheme

- Both have in common that they are centered on one particle
- Both distinguish between nearby and remote stars, and they save computational time
- What is the fundamental difference between them?
- Neighbour scheme is a spatial hierarchy, which avoids a frequent force calculation of the remote particles \rightarrow their totality provides a smooth potential which does not vary so much \rightarrow potential is superposed by fluctuating peaks of close-by stars (irregular force)
- Time step scheme exhibits the temporal behaviour of the intervals for re-calculation of the full force in order to maintain the exactness of the trajectory; time steps chosen too small slow down the advancing calculation losing the computer's efficiency

Figure 9.1: Block time steps exemplary for four particles.

Regularization

- Stellar systems are characterized by a huge dynamical range in distance and time scales.
- The time scale varies e.g. in a star cluster from orbital periods of binaries of some hours/days up to the relaxation of a few hundred million years, or even billions of years.
- A key problem when modelling collisional dynamics is dealing with the divergence in the force for $r_i \rightarrow r_j$

$$\ddot{\mathbf{r}}_i = -G \sum_{j=1,\neq i}^N m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}$$

Recap: Softening

• The equation of motion is

$$\ddot{\mathbf{r}}_{i} = -G \sum_{j=1,\neq i}^{N} m_{j} \frac{\mathbf{r}_{i} - \mathbf{r}_{j}}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}\right|^{3}}$$

- Singularity as $|\mathbf{r}_i \mathbf{r}_j| \rightarrow 0 \rightarrow$ can cause very small time steps
- Replace denominator with $\left(\left| \mathbf{r}_{i} \mathbf{r}_{j} \right|^{2} + \varepsilon^{2} \right)^{3/2}$
- ε is a small constant: softening parameter
- galaxy dynamics)
- $r < \epsilon$
- Hard binaries (very small separation) are an important source of energy in clusters

$$\mathbf{F}_{i} = \sum_{i \neq j} \frac{Gm_{i}m_{j}}{\left| \mathbf{r}_{i} - \mathbf{r}_{j} \right|^{2} + \epsilon^{2}}$$

• This approximation may be justifiable if close encounters between particles are unimportant (e.g.,

■ Not necessarily good for modelling star clusters → physically eliminates formation of binaries with

Regularization: binaries/close encounters in N-body codes for collisional dynamics

- Stellar systems are characterized by a huge dynamical range in distance and time scales.
- The time scale varies e.g. in a star cluster from orbital periods of binaries of some hours/days up to the relaxation of a few hundred million years, or even billions of years.
- A key problem when modelling collisional dynamics is dealing with the divergence in the force for $r_i \rightarrow r_i$...
 - Hermite 4th order behaviour: Time step reduction
 - smaller $\Delta t \rightarrow$ more steps to reach the same time \rightarrow larger numerical errors
- To avoid this problem, collisional N-body codes introduce regularisation for particles that move on tightly bound orbits or for when $r_i \rightarrow r_i$

$$\ddot{\mathbf{r}}_i = -G \sum_{j=1,\neq i}^N m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|^3}$$

Regularization: a way of handling binaries/close encounters

- Mathematical trick \rightarrow remove the singularity in the Newtonian law of gravitation for two particles which approach each other arbitrarily close
- change of variables
- without affecting the physics (different from softening)
- Kustaanheimo-Stiefel (KS) regularization: for binaries and 3-body encounters
- Change from coordinates to offset coordinates: CM and relative particle $x_{CM} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$ $x_{rel} = x_1 - x_2$ • Kepler orbit is transformed into a harmonic oscillator
- Significantly reduces the number of steps needed to integrate the orbit and reduces round-off error

One dimensional regularization

Consider unperturbed binary motion:

$$\ddot{r} = -\frac{1}{r^2}$$

where we have scaled to units such that G (transformed coordinate and time) such that

$$r = z^{2}$$

$$\frac{dt}{d\tau} = r$$

$$\frac{dt}{d\tau} = r$$

$$\frac{dt}{d\tau} = r,$$

$$\dot{r} = 2zz' \frac{d\tau}{dt} \text{ where , n}$$

$$= \frac{2zz'}{r} \text{ since } dt/d\tau = r,$$

$$= \frac{2zz'}{z}.$$

$$\left(m_i + m_j\right) = 1$$
. Introduce new variables z, τ at

means $d/d\tau$

r

Derivation based on 'Computation and astrophysics of the *N*-body problem' by Douglas Heggie

One dimensional regularization

$$\dot{r} = \frac{2z'}{z}$$

Differentiating again with respect to time gives similarly

$$\ddot{r} = \frac{2z''}{z^3} - 2\frac{z^2}{z^4}$$
$$= -\frac{1}{r^2} \text{ (equation of motion)}$$
$$= -\frac{1}{z^4}$$

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

$$\ddot{r} = -\frac{1}{r^2} \qquad \begin{array}{c} r = z^2 \\ \frac{dt}{d\tau} = r \\ \frac{d\tau}{d\tau} \end{array}$$

One dimensional regularization

Now

$$h = \frac{1}{2}\dot{r}^2 - \frac{1}{r}$$

energy is -1/r. Thus in the transformed equation of motion

$$z'' = \frac{1}{2}hz$$

the coefficient of z is constant. This is the simple harmonic oscillator equation

• Transformed the one-dimensional Kepler problem (which is singular at r = 0) into the simple harmonic oscillator equation, which is regular everywhere.

3D version of this is called KS regularisation

is the energy of the binary (per unit [reduced] mass); the kinetic energy is $\dot{r}^2/2$, the potential

Z

See Heggie & Hut (2003), chapter 15 for more details

Regularization: a way of handling close encounters

Hierarchical triples are binaries constantly perturbed by a third body: there is a procedure called "slow-down" which follows secular perturbations with (much) larger time step

- CHAIN regularization (Mikkola & Aarseth 1993: for small N-body systems) (non-hierarchical triples, quadruples)
- Calculate distances between an active object (e.g. binary) and the closest neighbours
- find vectors that minimize the distances \rightarrow use these vectors ("chain coordinates")
- to change coordinates and make suitable changes of time coordinates \rightarrow calculate forces with new coordinates

techniques in astrophysics

Credit: Lecture slides from Douglas Heggie

Geoplanet Doctoral School - PhD Lecture Course

9th April, 2024

Regularization: a way of handling close encounters

- Mathematical trick \rightarrow remove the singularity in the Newtonian law of gravitation for two particles which approach each other arbitrarily close (change of variables without affecting the physics, different from softening)
- Kustaanheimo-Stiefel (KS) regularization: for binaries and 3-body encounters
- Change from coordinates to offset coordinates: CM and relative particle
- Kepler orbit is transformed into a harmonic oscillator
 - Significantly reduces the number of steps needed to integrate the orbit and reduces round-off error
- CHAIN regularization (Mikkola & Aarseth 1993: for small N-body systems)
- Calculate distances between an active object (e.g. binary) and the closest neighbours
- find vectors that minimize the distances \rightarrow use these vectors ("chain coordinates")
- to change coordinates and make suitable changes of time coordinates \rightarrow calculate forces with new coordinates

$$x_{rel} = x_1$$

Errors and quality control

- How do we know if the results from an N-body simulation are correct?
 - No exact solutions
- Check conserved quantities
 - Total momentum
 - Total angular momentum
 - Total energy (most sensitive)
- Growth of errors is exponential
 - After a short time the positions and velocities of particles are wrong
 - Assume that the statistical properties of the simulation are correct

Geoplanet Doctoral School - PhD Lecture Course

Basic structure of a collisional N-body code: complexity

- 1. Initialisation of \mathbf{r}_i , \mathbf{v}_i , tnext i (update time $t_i + \Delta t_i$), \mathbf{a}_i , $\dot{\mathbf{a}}_i$ for all I
- 2. Choose *i* minimising tnext i
- 3. Extrapolate all r_i , v_i to the transformation to the transformation of transf
- 4. Compute new \mathbf{a}_i , $\dot{\mathbf{a}}_i$ (Predictor step)
- 5. Correct new \mathbf{r}_i , \mathbf{v}_i (Hermite integrator)
- 6. Compute new tnext *i*

For each time step Δt , the computational effort is approximately proportional to N.

Done Once

Basic structure of a collisional N-body code: complexity

- Typical time step is $\Delta t \sim \frac{r}{v}$, where v is typical speed and r is typical distance to nearest neighbour
- The system has volume of order R^3 , where R is the virial radius. Divided among N stars, each star occupies volume of order R^3/N . Hence $r \sim R/N^{1/3}$
- In N-body units (Hénon units) $v \sim 1, R = 1$, and so $\Delta t \sim N^{-1/3}$
- Each time step takes of order N operations, and there are N particles. Hence the computational effort per Hénon time unit is of order $N \times N \times N^{1/3} = N^{7/3}$

Simulating a globular cluster with NBODY6

- Includes treatment of stellar and binary evolution for various metallicities
- Based on population synthesis codes \rightarrow SSE/BSE (Hurley et al. 2002) \rightarrow numerous updates made to these prescriptions (Kamlah et al. 2022)
- Includes effects of external forces (the gravitational acceleration) due to the Galaxy)
- Includes rudimentary treatment of collisions between stars (sticky particle approximation)
- Main issue:
- Computation is slow \rightarrow main bottleneck \rightarrow computing new acceleration and jerk
- Realistic globular clusters can take up to a year or more to evolve on supercomputers + GPU acceleration

Hardware acceleration of N-body codes

- Graphics Processing Units (GPUs):
- Efficient matrix operations (used for 3D renderings)
- Architecture: Single instruction on multiple data threads
 - Single operation: Acceleration and jerk calculation on many pairs of particles
 - Each interparticle force between a pair is independent of other pairs
- Can be programmed with CUDA
- Potential for scientific research/AI/Data analytics being realised (mid 2000s to present-day)
- GRAvity PipE (GRAPE): a hardware implementation of Newtonian pair-wise force calculations between particles in a self-gravitating Nbody system: <u>https://www.ias.edu/ids/~piet/act/comp/hardware</u>
 - Made by researchers working on star cluster evolution in Tokyo (D. Sugimoto & Jun Mukino et al. from 1989 to 2001)
 - 2001: GRAPE-6 system at 48 TFLOP (for comparison Sony PS5 is 10.28 TFLOPS)

NVIDIA A100 GPUs

NVIDIA Titan V: 110

J. Makino with GRAPE-4, ca.1995

9th April, 2024

Hardware acceleration of N-body codes

- Graphics Processing U In 2004-2008, researchers found that GPUs are at least as fast as

 - Architecture: Single ins
 - Single operation: Accele
 - Each interparticle force
 - Can be programmed with
 - Potential for scientific res
- GRAvity PipE (GRAPE): pair-wise force calcula body system: <u>https://v</u>
- Made by researchers wor Jun Mukino et al. from 19
- 2001: GRAPE-6 system at

J. IVIANITU with GRAPE-4, ca.1995

NBODYX Versions

A brief comparison of the code versions:

ITS: Individual time-steps

ACS: Neighbour scheme (Ahmad–Cohen scheme) with block time–steps

KS: KS-regularization of few-body subsystems

HITS: Hermite scheme integration method combined with hierarchical block time steps

PN: Post-Newtonian terms

CC: Classical regularized chain

AR: Algorithmic regularization chain

MPI: Message Passing Interface, multi-node multi-CPU parallelization

GPU: use of GPU acceleration (if also MPI: multi-node many GPU)

r: restricted Post-Newtonian, only orbit-averaged energy loss by grav. radiation

	ITS	ACS	KS	HITS	PN	CC	AR	I
NBODY1	\checkmark							
NBODY2		\checkmark		\checkmark				
NBODY3	\checkmark		\checkmark					
NBODY4			\checkmark	\checkmark				
NBODY5	\checkmark	\checkmark	\checkmark					
NBODY6		\checkmark	\checkmark	\checkmark	r	\checkmark	\checkmark	
NBODY6GPU		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
NBODY6++		\checkmark	\checkmark	\checkmark		\checkmark		
NBODY6++GPU		\checkmark	\checkmark	\checkmark	r	\checkmark		
NBODY7		\checkmark	\checkmark	\checkmark	r		\checkmark	
			-				-	

NBODY6++GPU Manual https://www.overleaf.com/read/ <u>hcmxcyffjkzq</u>

Developments in Direct N-body simulations

Direct N-body is a mountain challenge

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

The DRAGON simulations: globular cluster evolution with a million stars

Long Wang,^{1,2*} Rainer Spurzem,^{3,4,1*} Sverre Aarseth,⁵ Mirek Giersz,⁶ Abbas Askar,⁶ Peter Berczik,^{3,4,7} Thorsten Naab,⁸ Riko Schadow⁸ and M. B. N. Kouwenhoven^{1,2}

¹Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan Lu 5, Haidian Qu, 100871 Beijing, China ²Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, 100871 Beijing, China ³National Astronomical Observatories and Key Laboratory of Computational Astrophysics, Chinese Academy of Sciences, 20A Datun Rd, Chaoyang District, 100012 Beijing, China

⁴Astronomisches Rechen-Institut, Zentrum f
ür Astronomie, University of Heidelberg, Mönchhofstrasse 12-14, D-69120 Heidelberg, Germany ⁵Institute of Astronomy, University of Cambridge, Cambridge, CB3 0HA, UK

⁶Nicolaus Copernicus Astronomical Centre, Polish Academy of Sciences, ul. Bartycka 18, PL-00-716 Warsaw, Poland

⁷Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St, UA-03680 Kyiv, Ukraine

⁸Max-Planck Institut f
ür Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany

NBODY6++GPU (Wang 2015)

- Wang et al. (2016):
 - $N = 10^6$:
 - Initial half-mass radius: $\sim 7 pc$
 - Primordial binary 5%
 - 160 CPU cores + 16 K20x GPUs

Hydra GPU Cluster, Garching. Germany

Dragon Simulations: Direct N-body with million stars

D1-R7-IMF93

Observations of luminous stars simulated with the COCOA code (Askar et al. 2018)

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

D2-R7-IMF01

- Wang et al. (2016):
 - $N = 10^6;$
 - Initial half-mass radius: $\sim 7 pc$
 - Primordial binary 5%
 - 160 CPU cores + 16 K20x GPUs

More black holes \rightarrow puffy cluster with low central surface brightness \rightarrow large core and half-light radii

Other N-body codes for collisional N-body dynamics

- ϕ -GRAPE (Harfst et al. 2007) and ϕ -GPU (Berczik et al. 2011)
 - Developed by Peter Berczik: <u>https://github.com/berczik/phi-GPU-mole</u>
 - Hierarchical block time-steps
 - high (4th, 6th and 8th) order Hermite integration schemes
 - Softening
- FROST & BIFROST (Rantala et al. 2023)
 - fourth-order forward symplectic integrator
 - GPU accelerated
 - High binary fraction: secular and regularised integration for binaries, triples, multiples, few body systems
 - Small softening values

Hybrid N-body codes: BRIDGE (Fujii et al. 2007), PeTar (Wang et al. 2020)

Geoplanet Doctoral School - PhD Lecture Course

N-body simulations for collisionless systems

- Softening
- What is a reasonable value of epsilon?
- Average distance between particles or a bit less
- Adaptive individual softening
- leapfrog can be used
- Same time-step for all particles commonly used
- Force computation: Approximating direct summation
 - No need to estimate the force exerted by each single particle on another
 - Can estimate the cumulative force exerted by groups of particles if they are sufficiently far

$$F_{ij} = -Gm_i m_j \frac{\mathbf{r}_i - \mathbf{r}_j}{\left(\left| \left| \mathbf{r}_i - \mathbf{r}_j \right|^2 + \epsilon^2 \right)^{3/2} \right.}$$

Time steps can be large depending on the problem at hand: lower order integrators like

- Uses a hierarchical spatial tree to define localised groups of particles

Example: quad-tree with 8 particles

• The crucial idea in speeding up the brute force n-body algorithm is to group nearby bodies and approximate them as a single body.

Credit: Mapelli lectures on N-body techniques in astrophysics

Example: quad-tree with 8 particles

Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar

Credit: Mapelli lectures on *N*-body techniques in astrophysics

- Force between nearby particles is calculated directly
 - e.g. the force exerted by F on E
- Force between distant particles is approximated with centre of mass
 - e.g. the force of E, F, G on D is approximated by the centre of mass of E, F and G
- Can significantly reduce the number of force • calculations
- Need a criteria to decide when particle is far enough to avoid direct calculation
- Based on the ratio of the width of the region represented by the considered node (s) and the distance between the body and the node's center-of-mass

 $\theta = 0.5$ commonly used in practice

Credit: Mapelli lectures on N-body techniques in astrophysics

Fig. 5. Left: computation of the force for one of 100 particles (asterisks) in two dimensions (for graphical simplicity) using direct summation: every line corresponds to a single particle-particle force calculation. Middle: approximate calculation of the force for the same particle using the tree code. Cells opened are shown as black squares with their centres z indicated by solid squares and their sizes w by dotted circles. Every green line corresponds to a cell-particle interaction. Right: approximate calculation of the force for all 100 particles using the tree code, requiring 902 cell-particle and 306 particle-particle interactions ($\theta = 1$ and $n_{\text{max}} = 1$), instead of 4950 particle-particle interactions with direct summation.

From Dehnen & Read (2011)

See Dehnen & Read (2011) for Fast multipole method (FMM) and Grid-based methods

In direct summation for acceleration calculation: N(N-1)/2For N=100, 4950 particleparticle interactions

With tree code: 902 cell-particle and 306 particle-particle interactions

Evaluation of force scales as $O(N \log N)$

Hybrid N-body code: PeTar

PeTar is an N-body code specifically designed for modeling collisional stellar systems, where factors such as multiplicity (binaries, triples, etc.) and close encounters play a crucial role in dynamical evolution. PeTar offers several key advantages:

- Precise gravitational force modeling: PeTar does not employ any softening of gravitational force, enabling accurate tracking of the orbital evolution of binaries, triples, and close encounters.
- PeTar (Wang et al. 2020): Barnes-Hut Tree Algorithm + Hermite Integrator + slow-down algorithmic regularization
- Leverages multi-CPU processors/threads and GPU acceleration to accelerate simulations
- Up to 11 times faster than NBODY6++GPU
- Can treat high multiplicity fraction (binaries and triples)
 - No Softening

https://github.com/lwang-<u>astro/PeTar</u>

short-range interaction (H_S)

Fig. 1 from Wang et al. (2020)

Key takeaways

- Direct summation *N*-body codes for collisional systems are slow but accurate!
- Solving equation of motions seems straightforward but computationally challenging
- Several techniques to speed up calculations:
 - Neighbour scheme
 - Hierarchical block time steps
 - Regularization
 - Parallelization
- Hardware acceleration has enabled long-term simulations of realistic globular clusters models
 - GPUs (game changer)
- Collisionless *N*-body systems are relatively less tedious
- Softening and lower order integrators
- Direct summation can be avoided: Tree Methods

 $\sim O(N^2)$

Up next: Monte Carlo modelling is a realistic practical alternative to simulating large globular clusters

