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Outline: N-body simulations of gravitational dynamics

• The N-body problem and its astrophysical settings 

• What is an N-body system? 

• Solving the equations of motion 

• Complexities and challenges 

• Structure of a simples direct-summation N-body code 

• Integration strategies 

• Timesteps 

• Regularization
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Classical gravity and the N-body problem

• Predicting the individual motions (position and velocities) of 
a group of objects (N=1,2,3,…) interacting due to gravity 

• Newton formulated the law of universal gravitation (1686) 

• Was motivated, at least in part, by a desire to understand the 
movements of the planets

Credit:  UC Libraries’ Internet Archive

F = G
m1m2

r2

Credit: The Sky; 3D Solar System Simulator
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Astrophysical N-body systems: Binary systems, triples and multiples

Binary Stars  
Credit: ALMA (ESO/NAOJ/NRAO), 

Alves et al. 2019

KOI-5 star system 
Credis: Caltech/R. Hurt (IPAC)

TYC 7037-89-1; a triple-binary 
sextuple star system  

Credit: GSFC 
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Astrophysical N-body systems: The Galactic Center

Orbit of stars around Sgr A* in the Galactic Center 
Credit: Keck/UCLA
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Astrophysical N-body systems:  Star Clusters

Open Cluster M67  
Credit: Jim Mazur’s Astrophotography

Globular Cluster M4  
Credit: ESO La Silla 2.2m telescope
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Astrophysical N-body systems:  Young Star Clusters

NGC 1850 in the Large Magellanic Cloud 
Credit: NASA/ESA Hubble Space Telescope

R136 star cluster in the LMC 
Credit: NASA/ESA Hubble Space Telescope
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Astrophysical N-body systems:  Galaxy dynamics and cosmic structures

Antennae Galaxies 
Credit: NASA/ESA HST Each dot is a galaxy 

Credit: Sloan Digital Sky Survey (SDSS) map of 
the Universe
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The gravitational N-body problem: Equation of motion
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The gravitational N-body problem: Equation of motion

Stellar dynamics can be defined as studying 
the consequences of this equation in 

astrophysical contexts



Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar Geoplanet Doctoral School - PhD Lecture Course                                                                                     26th March, 2024

The gravitational N-body problem: Equation of motion

“These equations have an appealing — if deceptive —simplicity" 
Lyman Spitzer, Jr

Stellar dynamics can be defined as studying 
the consequences of this equation in 

astrophysical contexts
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Complexities of gravity

• Analytic solutions only for N = 2 (and restricted N = 3) 

• Force calculation is  operation 

• Gravitational force does not fade off (even far away particle interact) 

• Calculation of a system of N particles cannot be decomposed in smaller pieces 

• At small distances the force of gravity grows limitless. 

• The equations of motion are intrinsically chaotic 

• Systems bound by gravity have a negative heat capacity 

• Our daily experience are not trained to appreciate the complexities of gravity

∼ N × N

“Enormous range of length scales (and, consequently, time scales) is one reason 
why the N-body equations are a severe challenge to the computational 
[astro]physicist.” 

Heggie & Hut (The Gravitational Million Body Problem 2003)
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Mathematics of the N-body problem

• For N=2 systems (two-body problem), solution can be computed analytically 

• e.g., Herman (1710) & Bernoulli (1710) 

• Total momentum:  

• Rate of change of momentum  

• Two bodies will move around a common point (CoM; center of mass) which moves at a 
constant velocity 

• For N=3, there is no general analytic solution

p = m1v1 + m2v2

dp
dt

= m1
dv1

dt
+ m2

dv2

dt
= F1 + F2

F1 = − F2 → dp/dt = 0 → p = 	const.	
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1885: Prize competition in honour of King Oscar II

• A challenge was proposed (to be answered before 21/01/1889)

Credit: Hulton Archive

http://www.mittag-leffler.se/library/henri-poincare 

http://www.mittag-leffler.se/library/henri-poincare
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Mathematics of the N-body problem

• For N=3, there is no general analytic solution 

• Approximate solutions when one particle is much less massive than the other two 

• Constraints 

• Total energy is conserved: 

• Angular momentum is conserved: 

• Total momentum conserved: center of mass moves at constant velocity (6 more constraints)

E =
1
2 ∑

i

miv2
i + ∑

i
∑
j≠i

Gmimj

ri − rj

= 	const.	

L = ∑
i

ri × mivi = 	const.	

VCM = 	const	 XCM = X0 + VCMt
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The gravitational N-body problem: Computation

• Motion of the particles given by Newton’s law: 

• Forces computed from Newton’s law of gravity: 

• Direct N-body: Integrator to solve the ordinary differential equations (2 coupled ODEs)

dXi

dt
= Vi mi

d Vi

dt
= Fi

Fi = ∑
i≠j

Gmimj

ri − rj
2
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Direct N-body technique: advantages

• The equation of motion of the ith star is  

• Numerically integrating these equations enables following the evolution of star cluster  
throughout its entire lifespan 

• Least amount of assumptions, do not require: 

• Dynamical equilibrium 

• Non-rotating systems 

• Spherical symmetry

··ri = − G
N

∑
j=1,≠i

mj
ri − rj

ri − rj
3
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Holmberg’s “N-body” experiment: Interacting galaxies

Replaced gravity with light

I ∝ (1/d2)
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Holmberg’s “N-body” experiment: Interacting galaxies
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Computing forces between particles: Softening

• The equation of motion is 

• Singularity as   → can cause very small time steps 

• Replace denominator with  

•  is a small constant: softening parameter 

• This approximation may be justifiable if close encounters between particles are unimportant (e.g., galaxy 
dynamics) 

• Not necessarily good for modelling star clusters → physically eliminates formation of binaries with  

• Hard binaries (very small separation) are an important source of energy in clusters

ri − rj → 0

( ri − rj
2

+ ε2)
3/2

ε

r < ϵ

··ri = − G
N

∑
j=1,≠i

mj
ri − rj

ri − rj
3

Fi = ∑
i≠j

Gmimj

ri − rj
2

+ ϵ2
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Modelling globular cluster (collisional) stellar dynamics

• Particle methods: 

• Direct summation N-body approach; “brute force” 

- NBODYX series of codes: https://people.ast.cam.ac.uk/~sverre/web/pages/
nbody.htm (Aarseth 2003)  

- NBODY6++GPU (Wang, Spurzem et al. 2015; 2016): https://github.com/nbody6ppgpu 

• Monte Carlo method 

- MOCCA (Giersz 1998 → Hypki & Giersz 2013) 
http://www.moccacode.net/ 

- CMC (Joshi et al 2000 → Rodriguez et al. 2022) 
https://clustermontecarlo.github.io/CMC-COSMIC/ 

• Continuum methods/Phase space descriptions: 

• Gas sphere 

• Fokker-Planck methods

Sverre Aarseth

Michel Hénon
Also see: http://www.artcompsci.org/ & 
https://github.com/amusecode/amuse

https://people.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
https://people.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
https://github.com/nbody6ppgpu
http://www.moccacode.net/
https://clustermontecarlo.github.io/CMC-COSMIC/
http://www.artcompsci.org/
https://github.com/amusecode/amuse
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Speed–Accuracy tradeoff

Fig 3 from Amaro-Seoane et al. 2007
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Equilibrium models and initial conditions for cluster models

• Mass, 3 position coordinates, 3 velocity coordinates for N stars 

• Systems evolve towards dynamical equilibrium: 

• No overall expansion or contraction of the system, or other bulk motion, even 
though all particles are in motion → “virial equilibrium” 
 
 
 
 

•  - typical stellar speed  

•  - total cluster mass 

•  - virial radius

V

M

R

f( ⃗x , ⃗v , t)d3 ⃗x d3 ⃗v
vi ≡ ·ri

2K + U = 0K = ∑
i

1
2

miv2
i

U = − ∑
i,j,i≠j

Gmimj

rij

V2 =
2K
M

K + U = E

K = − E
U = 2E

M =
N

∑
i=1

mi
U = − 2K

U = −
GM2

2R
Q =

K
|U |

= 0.5

Continuous	sequence	of	
changes	in	response	to	
an	independent	
variable,	t.	
We	need	to	specify	6N	
conditions	(x	and	v)	to	
solve	our	initial	value	
problem.
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N-body units (also known as Hénon units)

• In these units: 

• The characteristic speed 

• The crossing time 

• The total energy

G = 1
M = 1
R = 1

V2 =
GM
2R

=
1
2

tcr =
2R
V

= 2 2

E = −
1
2

MV2 = −
1
4

(virial radius)
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N-body units (also known as Hénon units)

• In these units: 

• The characteristic speed 

• The crossing time 

• The total energy

G = 1
M = 1
R = 1

V2 =
GM
2R

=
1
2

tcr =
2R
V

= 2 2

E = −
1
2

MV2 = −
1
4

Why should we use N-body units? 

• choosing right units helps the integrator 
→ rounding errors 

• Scalability of results

(virial radius)



Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar Geoplanet Doctoral School - PhD Lecture Course                                                                                     26th March, 2024

N-body units (also known as Hénon units)

• This is a conventional system of units in which: 

• These are often used in N-body and Monte Carlo simulations. 

• Example of scaling from N-body units: 

• Velocity of a system is given by  

• Star cluster with  and  

• To convert a velocity from N-body codes to km/s, multiply by  

• where G is expressed in the same units as mass, radius and velocity ( )

V2 =
GM
2R

M = 105M⊙ R = 5 pc

GM
R

 i.e. km/s, M⊙, pc

G = 1
M = 1
R = 1



Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar Geoplanet Doctoral School - PhD Lecture Course                                                                                     26th March, 2024

Reminder: What do we need to integrate?

• To solve the ordinary 
differential equations (2 
coupled ODEs) 

• Accurate time integration of 
close encounters is the most 
difficult part of collisional N-
body methods 

• For collisionless N-body 
methods force softening 
alleviates this problem 
substantially.
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Taylor series expansion of the equations of motion

xi(t + Δt) = xi(t) +
dxi(t)

dt
Δt +

1
2

d2xi(t)
dt2

Δt2 + O (Δt3)

vi(t + Δt) = vi(t) +
dvi(t)

dt
Δt +

1
2

d2vi(t)
dt2

Δt2 + O (Δt3)

• Obtaining position and velocities at time  
knowing info at time 

t + Δt

t
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Integration strategy: Euler method

• Updates the position and velocity for a given particle by time step  
via 

• In this approximation, the velocity and acceleration of the particle are 
held constant for the duration of the time step. 

• While conceptually straightforward, this scheme performs very poorly 
in practice 

• The Euler method is just a Taylor expansion to first order in 
 

• Errors grow to quickly to be used to study astrophysical systems like star clusters

Δt

Δt and the errors are proportional to Δt2

r(t + Δt) = r(t) + v(t)Δt
v(t + Δt) = v(t) + a(t)Δt
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Integration strategy: Leapfrog method

• Similar to Euler but evalutations are done in 
between time step Δt Leapfrog algorithm

v (t +
Δt
2 ) = v(t) + a(t)

Δt
2

r(t + Δt) = r(t) + v(t)Δt +
1
2

a(t)Δt2

v(t + Δt) = v (t +
Δt
2 ) + a(t + Δt)

Δt
2

New position is calculated using an extra term proportional 
to  

Velocity updated in 2 steps - first half of the time step is 
taken using the current acceleration and second is taken 

using the new acceleration 

Δt2

Credit: Mapelli lectures on N-body 
techniques in astrophysics
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Integration strategy: Leapfrog method
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Integration strategy: Leapfrog method

• Similar to Euler but evalutations are done in 
between time step Δt Leapfrog algorithm

v (t +
Δt
2 ) = v(t) + a(t)

Δt
2

r(t + Δt) = r(t) + v(t)Δt +
1
2

a(t)Δt2

v(t + Δt) = v (t +
Δt
2 ) + a(t + Δt)

Δt
2

New position is calculated using an extra term proportional 
to  

Velocity updated in 2 steps - first half of the time step is 
taken using the current acceleration and second is taken 

using the new acceleration 

Δt2

Credit: Mapelli lectures on N-body 
techniques in astrophysics
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Implementation of direct N-body codes for collisional dynamics

• Direct summation N-body approach; “brute force” 

- NBODYX series of codes: https://
people.ast.cam.ac.uk/~sverre/web/pages/
nbody.htm (Aarseth 2003)  

- NBODY6++GPU (Wang, Spurzem et al. 2015; 2016): 
https://github.com/nbody6ppgpu 

• Integration Scheme: 

• Since close encounters and interactions between 
stars are important in star clusters → integrator 
must be high accuracy even on short times scales → 
4th order accuracy 

• Expand Taylor series solution for the position and 
velocities to fourth order in an interval → Hermite 
integrator

Euler method Algorithm:

r(t + Δt) = r(t) + v(t)Δt
v(t + Δt) = v(t) + a(t)Δt

Leapfrog algorithm

v (t +
Δt
2 ) = v(t) + a(t)

Δt
2

r(t + Δt) = r(t) + v(t)Δt +
1
2

a(t)Δt2

v(t + Δt) = v (t +
Δt
2 ) + a(t + Δt)

Δt
2

New position is calculated using an extra term 
proportional to  

Velocity updated in 2 steps - first half of the time 
step is taken using the current acceleration and 

second is taken using the new acceleration 

Δt2

ri(t + Δt) = ri(t) + Δtvi(t) +
1
2

(Δt)2ai(t) +
1
6

(Δt)3ji(t) + …

https://people.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
https://people.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
https://people.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
https://github.com/nbody6ppgpu
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Hermite Integration: 4th order predictor-corrector

• The algorithm consists of a prediction step: 

• a correction step that makes use of the initial 
coordinates and the predicted coordinates: 

• j(t) is the jerk which is the time derivative of the acceleration 

•  is the acceleration calculated using the predicted positionsap

ai = − G
N

∑
j=1,≠i

mj
ri − rj

ri − rj
3

ji ≡ ·ai = − G
N

∑
j=1,≠i

mj
vi − vj

ri − rj
3 − 3

(vi − vj) . (ri − rj)
ri − rj

5 (ri − rj)

rp = r(t) + v(t)Δt +
1
2

a(t)Δt2 +
1
6

j(t)Δt3

vp = v(t) + a(t)Δt +
1
2

j(t)Δt2

r(t + Δt) = r(t) +
1
2 (v(t) + vp) Δt +

1
12 (a(t) − ap) Δt2

v(t + Δt) = v(t) +
1
2 (a(t) + ap) Δt +

1
12 (j(t) − jp) Δt2

Calculating the Jerk:

Taylor series evaluation

Hermite interpolation which 
approximates the higher accelerating 

terms by another Taylor series 
Trick: Instead of doing more derivatives 

of jerk, use derivative of predicted values
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• The algorithm consists of a prediction step: 

• a correction step that makes use of the initial 
coordinates and the predicted coordinates: 
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Basic structure of an N-body code

1. Initialisation of   ,  (update time ),  for all Iri, vi  tnext i ti + Δti ai, ·ai

	3.	Extrapolate	all	rj, vj	to		tnext	i

	2.	Choose	i	minimising		tnext	i

	4.	Compute	new	ai, ·ai (Predictor	step)

	5.	Correct	new	ri, vi	(Hermite	integrator)	

	6.	Compute	new		tnext	i

Note: This is the basic structure of NBODY6, except for 
the absence of block time steps
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Basic structure of an N-body code and time step issues

1. Initialisation of   ,  (update time ),  for all Iri, vi  tnext i ti + Δti ai, ·ai

	3.	Extrapolate	all	rj, vj	to		tnext	i

	2.	Choose	i	minimising		tnext	i

	4.	Compute	new	ai, ·ai (Predictor	step)

	5.	Correct	new	ri, vi	(Hermite	integrator)	

	6.	Compute	new		tnext	i

Δti = η
ai

ji
• Time step issues: 

• Same time step for all particles? 

- Expensive because a few particles undergo close encounters 

→ force changes more rapidly for them 

• Ideally:  

- Longer time steps for ‘unperturbed' particles 

- Shorter for particles that undergo close encounters 

- Different  for each particle is expensive and systems lose 

coherence 

• Block time step scheme: group particles by replacing 
their individual time steps such that  is an integer 

(good for synchronization): 
Group together particles which have very similar update 
times. The extrapolation is shared among them.

Δti

t/Δti,b

Check out Aarseth, Tout & Mardling (eds): The Cambridge N-Body 
Lectures (2008) for details



Star Cluster Dynamics and Evolution - Mirek Giersz & Abbas Askar Geoplanet Doctoral School - PhD Lecture Course                                                                                     26th March, 2024

Basic structure of an N-body code and time step issues

	3.	Extrapolate	all	rj, vj	to		tnext	i

	2.	Choose	i	minimising		tnext	i

	4.	Compute	new	ai, ·ai (Predictor	step)

	5.	Correct	new	ri, vi	(Hermite	integrator)	

	6.	Compute	new		tnext	i

• Neighbour Scheme (Ahmad & Cohen 
1973) 

• Time step determined by nearest neighbour  

• Few near neighbours→ force due to them 
can be computed frequently with little effort 
(the "irregular force”) 

• force due to the more numerous non-
neighbours (the "regular force") fluctuates 
more slowly, and can be computed with a 
longer time step 

• Requires keeping a list of neighbours

Check out Aarseth, Tout & Mardling (eds): The Cambridge N-Body 
Lectures (2008) for details + NBODY6++GPU Manual
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Regularization: a way of handling close encounters 

• Mathematical trick → remove the singularity in the Newtonian law of 
gravitation for two particles which approach each other arbitrarily close 
(change of variables, different from softening) 

• Kustaanheimo-Stiefel (KS) regularization: for binaries and 3-body encounters 

• Change from coordinates to offset coordinates: CM and relative particle 

• Kepler orbit is transformed into a harmonic oscillator 

- Significantly reduces the number of steps needed to integrate the orbit and reduces round-off 
error 

• CHAIN regularization  (Mikkola & Aarseth 1993: for small N-body systems 

• Calculate distances between an active object (e.g. binary) and the closest neighbours 

• find vectors that minimize the distances → use these vectors (“chain coordinates”) 

• to change coordinates and make suitable changes of time coordinates → calculate forces 
with new coordinates Credit: Mapelli lectures on N-body 

techniques in astrophysics

xCM =
m1x1 + m2x2

m1 + m2

xrel = x1 − x2


