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Collisionless Dynamics N-body Problem

variables written in bold are vectors
variables written in normal font are scalars

Let’s consider a self-gravitating system of N stars that do not experience
any external forces - the system is isolated. The stars are from 1 to N.
Consider a Cartesian coordinate system x, y, z. The coordinates of star i
are xi, yi, zi. Accordingly the velocity has components

dxi

dt
= ẋi = ui

dyi

dt
= ẏi = vi (1)

dzi

dt
= żi = wi
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Collisionless Dynamics N-body Problem

The distance between stars i and j is

rij = |rj − ri| =
√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2

The force of attraction between stars i and j is

Fij =
Gmimj

r2
ij

rj − ri

|rj − ri|
(2)

where mi and mj are masses of star i and j, respectively.
The total force acting on star i due to all the other stars is

mir̈i = Fi =

N∑
j=1,i ̸=j

Gmimj(rj − ri)

r3
ij

i = 1, ...,N (3)

We have a system of 3N simultaneous second-order differential equations - dynamical
system of order 6N. The evolution of the system in time is know if we are able to solve 6N
differential equations.
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Collisionless Dynamics N-body Problem - Ten Integrals
Center of Mass

N∑
i=1

mir̈i =

N∑
i=1

N∑
j=1,i̸=j

Gmimj(rj − ri)

r3
ij

Gmimj(rj − ri)

r3
ij

+
Gmjmi(ri − rj)

r3
ji

= 0

N∑
i=1

mir̈i = 0

N∑
i=1

miri = at + b

∑N
i=1 miri∑N
i=1 mi

=
at + b

M
(4)

The center of mass of the system moves at constant speed
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Collisionless Dynamics N-body Problem - Ten Integrals

Total Angular Momentum
N∑

i=1

miri × r̈i =

N∑
i=1

N∑
j=1,i ̸=j

Gmimjri × (rj − ri)

r3
ij

i = 1, ...,N

Since term ri × ri = 0 and ri × rj = −rj × ri then
N∑

i=1

miri × r̈i = 0

d
dt
(

N∑
i=1

miri × ṙi) =

N∑
i=1

miri × r̈i = 0

N∑
i=1

miri × ṙi = c (5)

The total angular momentum of the system is conserved for an isolated system
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Collisionless Dynamics N-body Problem - Ten Integrals

Total Energy

Ω = −
N−1∑
i=1

N∑
j=i+1

Gmimj

rij
Total Potential Energy

∂Ω

∂xi
= −

N∑
i=1,i ̸=j

∂

∂xi

(
Gmimj

rij

)
=

N∑
i=1,i ̸=j

Gmimj

r2
ij

∂rij

∂xi
= −

N∑
i=1,i ̸=j

Gmimj

r2
ij

xj − xi

rij
= −miẍi

Finally

mir̈i = −∇iΩ (6)

The force equals minus the gradient of the potential energy
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Collisionless Dynamics N-body Problem - Ten Integrals

Scalar product of Eq.6 gives

N∑
i=1

miṙi · r̈i +

N∑
i=1

miṙi · ∇iΩ = 0

∂Ω

∂x1
ẋ1 + ...+

∂Ω

∂zN
żN =

∂Ω

∂x1

dx1

dt
+ ...+

∂Ω

∂zN

dzN

dt
=

dΩ
dt

Second Term

d
dt

N∑
i=1

miṙ2
i

2
+

dΩ
dt

= 0 (7)

After integration over time Eq.7 we get

T +Ω = E (8)

The energy is constant
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Collisionless Dynamics N-body Problem - Ten Integrals
Concluding Remarks

We have found ten integrals - the vectors a, b and c plus the scalar E
In principle, each integral allows to substitute one variable in terms of
the others, i.e., to reduce the order of the system by 1;
the order of the system can be reduced from 6N to 6N - 10;
Only the two-body problem (N = 2) is actually possible to solve
completely;
For real stellar systems, like star clusters, N > 104 only statistical
approach can bring solutions - STATISTICAL MECHANICS;
The integrals derived above refer to the whole system and not to
individual stars;
The symmetries of the systems allow the existence of such integrals,
and they are very useful for constructing models of those systems.

Mirek Giersz and Abbas Askar Collisionless and Collisional Stellar Dynamics LectureII



MOCCA

Collisionless Dynamics The Virial Theorem

I =
N∑

i=1

mir2
i Moment of Inertia

İ = 2
N∑

i=1

miriṙi

Ï = 2
N∑

i=1

miṙ2
i + 2

N∑
i=1

mir̈i

Ï = 4T + 2
N∑

i=1

N∑
j=1,i ̸=j

Gmimjri × (rj − ri)

r3
ij

ri(rj − ri) + rj(ri − rj) = −(rj − ri)
2 = −r2

ij

Ï = 4T − 2
N∑

i=1

N∑
j=1,i ̸=j

Gmimj

rij
= 4T + 2U (9)
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Collisionless Dynamics The Virial Theorem
Steady state, Ï = 0 - size of the
system is constant
Movement of stars on the crossing
time scale makes Ï not constant
Averaging out statistical fluctuations
gives the condition 2T +Ω = 0
From the energy integral T +Ω = E
and after time averaging we have
T +Ω = E

So, T = −E and Ω = 2E, and T and
Ω are constant
T +Ω = E so only lines with slope -1
are allowed
Point A - Ï > 0, system expands to
reduce T and Ω

Point B - Ï < 0, system collapses to
increase T and Ω

This process is called virialization
Poind D - system is dissolved
a necessary condition for stability
of a stellar system is that E < 0
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Collisionless Dynamics The Virial Theorem

Pratical Use of the Virial Theorem
The total kinetic energy

T =
1
2

N∑
i=1

miv2
i =

1
2

N⟨mv2⟩

The total potential energy

Ω = −
N−1∑
i=1

N∑
j=i+1

Gmimj

rij
≃ N(N − 1)

2
G
〈

mimj

rij

〉
Assuming ⟨mv2⟩ = ⟨m⟩⟨v2⟩ and ⟨mimj/rij⟩ = ⟨m⟩2/⟨r⟩ and N⟨m⟩ = M we can write

⟨v2⟩ ≃ GM
2⟨r⟩

(10)

Very important equation to estimate global properties of dynamical systems
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Collisionless Dynamics Statistical Description

At a given moment t a star is fully described by its mass, m, position, (x, y, z), and
velocity, (u, v,w). In principle, from this information one may compute the evolution of
the system for all times.
Each star, i, is represented by a point in 7-dimensional space called phase space -
xi, yi, zi, ui, vi,wi,mi.
The whole system of N stars is represented by a set of N points in phase space. This
set completely describes the state of the system.
The N is very large. It is not possible to specify the exact position of each
representative point. Instead we can specify only the density of such points in
phase space.
The phase space is divided into small cells. Each cell has to be small compared to
the whole system but large enough to contain a considerable number of points.
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Collisionless Dynamics Statistical Description

f =
∆n
∆τ

Where ∆τ is the volume of the cell and ∆n is the number of starts inside the cell.
The value of f is defined for each cell. Interpolating and smoothing them between
cells, a continuous function can be defined everywhere in phase space. This is an
approximate function and approximation becomes better for larger N.
f is a function of the seven phase space coordinates but also depends on time -
representative points are moving as the stars follow their orbits.
f (x, y, z, u, v,w,m, t) is called distribution function (DF)∫ ∫ ∫ ∫ ∫ ∫ ∫

fdxdydzdudvdwdm =

∫
fdτ = N
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Collisionless Dynamics Statistical Description

Smoothed Density and Potential

ρ(x, y, z, t) =∫ m

o

mdm
∫ ∫ ∫ +∞

−∞
fdudvdw (11)

ρ can be derived from DF, but the
converse is not true

U(x1, y1, z1, t) =

−G
∫ ∫ ∫ +∞

−∞

ρ(x2, y2, z2, t)dx2dy2dz2

r12

4πGρ = ∇2U =
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2 (12)

Poisson Equation
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Collisionless Dynamics Statistical Description

The Liouville Equation

ẍ = −∂U
∂x

; ÿ = −∂U
∂y

; z̈ = −∂U
∂z

g =



ẋ = u = gx

ẏ = v = gy

ż = w = gz

u̇ = −∂U
∂x = gu

v̇ = −∂U
∂y = gv

ẇ = −∂U
∂z = gw

ṁ = 0 = gm

Seven equations describe the
motion of a representative point in
phase space. The velocity of the
point is a vector g with components
(gx, gy, gz, gu, gv, gu, gm).
The curve described by a
representative point in phase space
is trajectory
The orbit is a curve in physical
space followed by the actual star.
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Collisionless Dynamics Statistical Description

The vector g has an important property

div g = ∇ · g =
∂gx

∂x
+
∂gy

∂y
+
∂gz

∂z
+
∂gu

∂u
+
∂gv

∂v
+
∂gw

∂w
+
∂gm

∂m
= 0 (13)

According to the definition gx = u, so ∂gx/∂x = 0. Note: u and x are independent
coordinates in phase space. The same is true for the two following terms. gu = ∂U/∂x
depends only on x, y, z, so ∂gu/∂u = 0. The same is true for the two following terms. gm = 0

The value of f is constant along
phase space trajectories

Points at t0 in volume V0

Points at t1 in volume V1

If the flow of points is divergence free, divg = 0
then V1 = V0

The fluid in the phase space is
incompressible. Phase space volumes are
conserved during the motion of the system
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Collisionless Dynamics Statistical Description

The above arguments can be formulated by the principle of mass conservation. It can be
written for any fuid

∂f
∂t

+ div (gf ) = 0

∂f
∂t

+ g · ∇f + f div g = 0

The third term vanishes and the scalar product gives

∂f
∂t

+ gx
∂f
∂x

+ ...+ gm
∂f
∂m

= 0

∂f
∂t

+ u
∂f
∂x

+ v
∂f
∂y

+w
∂f
∂z

− ∂U
∂x

∂f
∂u

− ∂U
∂y

∂f
∂v

− ∂U
∂z

∂f
∂w

= 0 Boltzman Equation (14)

This equation expresses mathematically the fact that f is constant when following the
motion
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Collisionless Dynamics Statistical Description

Phase Space Mixing
If the system is not in virial equilibrium, how long does it take for the distribution function to
approach the steady state? Stars traversing the system exchange potential and kinetic
energies on orbital time scale

tc =
⟨r⟩
⟨v⟩

=

√
2⟨r⟩3

GM
Crossing Time

Pendulum system. Motion occur in only one
dimension. The phase space is then 2-dimensional - x
and u
The potential U corresponds to an attractive force
toward the origin. The objects of this system will
therefore oscillate around the origin with different
amplitudes,periods and phases.
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Collisionless Dynamics Statistical Description
The trajectory is an oval curve in the (x, u) plane
All pendulums initially cover a small area in a allowed phase
space
The area gets deformed due to the differences in period
between pendulums. Note - in spite of this deformation, the
area remains the same
Eventually the area will look like a narrow, winding spiral
As this spiral continues to wind, the different rounds get
squeezed and squeezed. After some time it becomes
impossible to separate the rounds from each other.
For all practical purposes, the distribution of stars looks
uniform within the band defined by the initial conditions. The
distribution function is constant along the trajectories and does
not change with time. This is the stationary state
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Collisionless Dynamics Statistical Description
Violent Relaxation
Violent relaxation changes the energies of the stars. When a star moves in a fixed
potential U, its energy E = 1/2v2 + U is constant. But if U is a function U(x, t) of space and
time, E is not constant. dE

dt = ∂U
∂t |x(t)

Examples
(1) - Star at rest at the center of a collapsing spherical protogalaxy. As the protogalaxy
collapses, the potential well at its center becomes deeper. On the other hand, the velocity
of the central star remains zero. Therefore the energy of this star decreases.
(2) - Collapsing protoglaxy and slowly moving star outside half-mass radius. When the star
will start to fall to the center the system will have the deepest central potential. The star at
the center will acquire a lot of kinetic energy. Star moving again outside will file less
deeper potential of re-expanding system. So, it will reach initial potential with much larger
kinetic energy
Violent Relaxation widens the range of energies of the stars and is independent of the
star’s mass. Phase Mixing keeps energy constant.
The collisionless relaxation processes, Phase Mixing and Violent Relaxation are distinct
effects but drive each other.
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Collisionless Dynamics Statistical Description
Jeans Theorem
Let’s eliminate stellar mass from the distribution function, so we can write:

φ =

∫ ∞

0
fmdm

φ physically means the mass density in a 6-dimensional reduced phase space

ρ =

∫ ∫ ∫ ∞

−∞
φdudvdw

The Poisson equation remains unchanged

∂φ

∂t
+u

∂φ

∂x
+v

∂φ

∂y
+w

∂φ

∂z
− ∂U
∂x

∂φ

∂u
− ∂U
∂y

∂φ

∂v
− ∂U
∂z

∂φ

∂w
= 0 Boltzman Equation (15)

By eliminating the masses in a collision-free system it does not matter at all, how the mass
is distributed between different stars, as long as the total mass per unit volume is
conserved. THIS IS NOT TRUE FOR COLLISIONAL SYSTEMS
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Collisionless Dynamics Statistical Description

Equation of motion are following

dφ
dx

= u, ...,
du
dt

= −∂U
∂x

, ... six order differential equations

An integral of the system is a function I(x, y, z, u, v,w, t), which has a constant value,
when inserting an arbitrary solution x(t), ...,w(t) of the system

There is SIX independent integrals, I1, I2, I3, I4, I5, I6

every integral is a function of the six independent integrals

I = f (I1, I2, I3, I4, I5, I6) (16)

This is the general expression for all integrals of the system, if f is an arbitrary function.
Only six independent integrals are needed to know them all.
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Collisionless Dynamics Statistical Description

Differentiating I we get:
∂I
∂x

u + ...− ∂I
∂u

∂U
∂x

− ...+
∂I
∂t

= 0

This is the Boltzman equation, if we replace I by φ

The distribution function is an integral of the equations of motion

φ = f (I1, I2, I3, I4, I5, I6) Jeans Theorem (17)

The above expressions for I are not constrained to be explicitly independent of time. In the
stationary state (system in equilibrium) ∂φ/∂t = 0. Remember that ρ and U are
independent on time in the steady state. Therefore, we can choose the integrals of
motions in such a way that only one of them will explicitly depend on time.
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Collisionless Dynamics Statistical Description
Eliminating dt from equation of motion we get

dx
u

=
dx
v

=
dx
w

=
du

−∂U
∂x

=
dv

−∂U
∂y

=
dw
−∂U

∂z
U does not depend on time so this system of equations is independent on time. These are
equation of trajectory
Let’s chose one variable. x as an independant variable, all others will be dependent

dy
dx

=
v
u
;

dz
dx

=
w
u
; ... This is fifth order

Hence there are five independent integrals, Ii(x, y, z.u, v,w) that remain constant along any
trajectory. They are integrals of the equations of motion
Among the six integrals,there are I1, ...I5 that are explicitly independent of time and are
called conservative integrals, and one integral I6 depends on time and is called a
non-conservative integral

φ = f(I1, I2, I3, I4, I5) For Steady State Systems φ does not depend on time (18)
non-isolating integral - the hyperplane consists of an infinite set of sheets situated infinitely
close to each other – φ only isolating integrals

Mirek Giersz and Abbas Askar Collisionless and Collisional Stellar Dynamics LectureII



MOCCA

Collisionless Dynamics Statistical Description

Short Summary
Integrals of Motion: any function of the phase-space coordinates and time I(x, v, t)
that is constant along every orbit where x(t) and v(t) are a solution to the equations of
motion
Any function of integrals is also an integral
Every integral is a constant of motion, but every constant of motion is not an integral.
For a circular orbit in a spherical potential, the azimuthal speed ψ = Ωt + ψ0. Hence,
C(ψ, t) ≡ t − ψ/Ω will be constant of motion, but is not an integral of motion because it
depends on time
Isolating Integrals of Motion reduce the dimensionality of the orbit by one, e.g E and J

Non-Isolating Integrals of Motion do not affect the phase-space distribution of an orbit,
i.e. do not reduce the dimensionality of the motion
For steady state distribution function is only function of conservative and isolating
integrals
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Collisionless Dynamics Statistical Description

Simple examples for spherically symmetric and isotropic stellar system - Polytropic models
Distribution Function only function of energy. Assume that E → U − 1/2V2, where
U → −U + U0

f (E) =

{
FEn− 3

2 E ≥ 0
0 E < 0

Solution for density is:
ρ = cnUn (19)

where cn is the integration constant For the polytropic equation ρ = Kpγ , where p is
pressure, and finally

ργ−1 =
γ − 1
γK

U (20)

So γ = 1 + 1/n. For n = 5 there is the Plummer model and for n = ∞ there is the
isothermal model
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Collisionless Dynamics Statistical Description

Plummer model - n = 5

ρ(r) =
3M

4πa3

(
1 +

r2

a2

)− 5
2

M(r) = M
(

1 +
r2

a2

)− 3
2

U(r) = −GM
a

(
1 +

r2

a2

)− 1
2

(21)

where a is related to the total Potential Energy W = − 3π
32

GM2

a
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Collisionless Dynamics Statistical Description

Isothermal Model - n = ∞ and γ = 1 Let’s assume the following distribution function

f = f0exp
(

E
σ2

)
The distribution of velocities at any point is Maxwellian, with one-dimensional dispersion
σ2. The density ρ = m

∫
fdv at any point can be written as

ρ

ρ0
= exp

(
−(U − U0)

σ2

)
where kT/m = σ2, and ρ0 and U0 are the density and potential (respectively) at some
point, often taken to be the center
We see that the density of more massive stars decreases with increasing U more quickly
than the density of less massive stars. This behavior is a simple example of mass
segregation. Note that it depends on the implicit assumption that all stars have the same
temperature.
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Collisionless Dynamics Statistical Description

Poisson’s equation

d
dt

(
r2 dln(ρ)

dr

)
= −4πG

σ2 r2ρ

Solution - infinite central density and
infinite total mass

ρ(r) =
σ2

2πGr2 , M(r) =
2σ2r

G

To remove singularity in the center let’s
define new variables

ρ→ ρ

ρ0
, r → r

r0
, r0 =

(
9σ2

4πGρ0

) 1
2

Tho parameters: σ and ρ0

Useful approximation

ρ

ρo
= 2

(
r
r0

)−2

For r ≫ r0

ρ

ρo
=

1(
1 + ( r

r0
)2
) 3

2
For r < r0
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Collisionless Dynamics Statistical Description

Lowered Isothermal Model - King Model
A model that resembles the isothermal
sphere at small radii, but its total mass is
finite. We can do it by setting arbitrary
constant U0 such that the critical value of
E0 = 0

f (E) =

{
ρo(2πσ2)−

3
2

(
e

E
σ2 − 1

)
E > 0

0 E ≤ 0

U(rt) = −GM(rt)

rt
, rt is the tidal radius

Additional model parameter - U0/σ
2 = W0

Concentration parameter c = log10(rt/rc)

The central potential is then
U(0) = U(rt)− U0. The bigger the
starting integration value U0 the greater
will be the tidal radius, the total mass,
and U(0)
King models form a sequence that may
be parameterized in terms of either c or
W0
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Collisionless Dynamics Short Summary

Each star is defined by its position r = (x, y, z), its velocity V = (u, v,w), and its mass m. It
is represented by a point in seven-dimensional space (x, y, z, u, v,w,m). A system of N
stars is represented by N points in the phase space. The distribution function f (r,V,m, t) is
defined as a number density of these points in the phase space.

Mass density ρ and potential U are smoothed-out functions.

ρ(r, t) =
∫ ∫

fdVmdm

U(r, t) = −G
∫
ρ(r‘, t)dr‘

| r‘ − r |

a = −∂U
∂r

4πGρ = ▽2U Poisson′s Equation

Mirek Giersz and Abbas Askar Collisionless and Collisional Stellar Dynamics LectureII



MOCCA

Collisionless Dynamics Short Summary

The evolution of the distribution function is governed by the Boltzmann equation

∂f
∂t

+ V
∂f
∂r

+ a
∂f
∂V

= 0

For the steady state the distribution function does not explicitly depends on time, so it is
not changing in time - ∂f

∂t = 0. The distribution function according to the Jeans theorem
depends only on the FOUR CONSERVATIVE, ISOLATING INTEGRALS OF MOTIONS,
f (I1, I2, I3, I4, I5, I6). The six integral of motion is non-conservative and the five is
non-isolating. Non-isolating integrals are such that the subspace defined by I = const in
phase space is made of an infinity of densely packed sheets.

The distribution function is only function of energy E, angular momentum A and
mass, m – f (E,A,m). For spherically symmetric system dependence on angular
momentum is only through its modulus.
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Collisionless Dynamics Short Summary

For spherically symmetric system ρ(r), U(r) are only
functions distance to the center, r. A star orbit is a
rosette with peri and apo distances, rmin and rmax,
respectively. The angle α between the consecutive
min and max positions is constant. It is not
commensurable with 2π - non isolating integral.

We can estimate the total kinetic and potential
energies by T = 0.5MV2, and W = −GM2/2R.
According to the virial theorem 2T + W = 0, so the
average velocity and the crossing time are:

V2 =
GM
2R

tc =
(

2R3

GM

) 1
2
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