The 6th Young Astronomers Meeting at CAMK PAN

Classical Cepheids: Laboratories
 of Stellar Astrophysics

Felipe Espinoza Arancibia

About me

> I'm from Calama, in the north of Chile
> Undergraduate and master's degree in Astrophysics at Pontificia Universidad Católica de Chile
$>3^{\text {rd }}$ year student at CAMK-PAN under the supervision of Bogumił Pilecki
$>$ I have 4 cats us
> My work focus on Classical Cepheids

Classical Cepheids

> Delta Cephei was discovered to be variable by John Goodricke during 1784.

From a window in Treasurer's House near this tablet. the young deaf and dumb astronomer JOHN GOODRICKE

1764 - 1786
who was elected a Fellow of the Royal Society at the age of 21 . observed the periodicity of the star ALGOL and discovered the variation of δ CEPHEI and other stars thus laying the foundation of modern measurement of the Universe

Classical Cepheids

$>$ Delta Cephei was discovered to be variable by John Goodricke during 1784.
$>$ In 1912, Henrietta Leavitt discovered that variables with longer periods had brighter magnitudes.

$$
M=a+b \log P
$$

M : absolute magnitude
a, b : constants
P : pulsating period
Leavitt \& Pickering (1912, Harv. Obs. Circ., 173)

Classical Cepheids

> Delta Cephei was discovered to be variable by John Goodricke during 1784.
> In 1912, Henrietta Leavitt discovered that variables with longer periods had brighter magnitudes.
$>$ Currently, there is a massive amount of data e.g.

Soszyński et al., 2015, Acta Astronomica, 65, 297

Classical Cepheids

> Delta Cephei was discovered to be variable by John Goodricke during 1784.
$>$ In 1912, Henrietta Leavitt discovered that variables with longer periods had brighter magnitudes.
$>$ Currently, there is a massive amount of data e.g.
Soszyński et al., 2015, Acta Astronomica, 65, 297
 The Optical Gravitational Lensing Experiment (OGLE) presented a nearly complete census of classical Cepheids in the Magellanic System.

We need to understand all this data!

Classical Cepheids

$>\sim 3-13 M_{\odot}$
$>$ Located in the classical instability strip (IS)

Classical Cepheids

κ : Represents ability of stellar material to absorb radiation
$>\sim 3-13 M_{\odot}$
$>$ Located in the classical instability strip (IS)
$>$ Pulsations are excited by the $\kappa-\gamma$ mechanism

Classical Cepheids

κ : Represents ability of stellar material to absorb radiation
$>\sim 3-13 M_{\odot}$
$>$ Located in the classical instability

Classical Cepheids:
 Laboratories of Stellar Astrophysics

Instability strip

Double-lined
 binary systems

Empirical instability strip for classical Cepheids I. The LMC Galaxy

Espinoza-Arancibia et al. 2024, A\&A, 682, A185

2058 fundamental and $13871^{\text {st }}$ overtone Cepheids

2058 fundamental and $13871^{\text {st }}$

 overtone Cepheids
Empirical ISs of both samples show a break

2058 fundamental and $13871^{\text {st }}$ overtone Cepheids

Empirical ISs of both samples show a break

Comparison with evolutionary tracks suggests that below the break we expect a high fraction of $1^{\text {st }}$ crossing Cepheids

Summer Student Program 2023

Student: Matylda Łukaszewicz (UW)

2058 fundamental and $13871^{\text {st }}$ overtone Cepheids

Empirical ISs of both samples show a break

Comparison with evolutionary tracks suggests that below the break we expect a high fraction of $1^{\text {st }}$ crossing Cepheids

Good agreement with other theoretical results

Espinoza-Arancibia et al. 2024, A\&A, 682, A185

Double-lined binary systems (SB2)

Pilecki B., Thompson, I. B., Espinoza-Arancibia, F. et al. 2022, ApJL, 940, L48
Pilecki B. et al. 2021, ApJ, 910, 118
The 6th Young Astronomers Meeting at CAMK PAN

Double-lined binary systems (SB2)

OGLE-LMC-CEP-1347

Pulsating in the first ($P_{10}=$ 0.69 d) and second overtone $\left(P_{20}=0.556 d\right)$ modes

The orbital period ($P_{\text {orb }}=59 \mathrm{~d}$) of the system is five times shorter than the shortest known to date for a binary Cepheid

Pilecki B., Thompson, I. B., Espinoza-Arancibia, F. et al. 2022, ApJL, 940, L48

Double-lined binary systems (SB2)

OGLE-LMC-CEP-1347

Pulsating in the first ($P_{10}=$ 0.69 d) and second overtone $\left(P_{20}=0.556 d\right)$ modes

$$
\begin{gathered}
q=m_{2} / m_{1} \approx 0.553 \text { (Pilecki et } \\
\text { al. 2022) }
\end{gathered}
$$

Double-lined binary systems (SB2)

OGLE-LMC-CEP-1347

Pulsating in the first ($P_{10}=$ 0.69 d) and second overtone $\left(P_{20}=0.556 d\right)$ modes
$q=m_{2} / m_{1} \approx 0.553$ (Pilecki et
al. 2022)

MESA-RSP

Double-lined binary systems (SB2)

OGLE-LMC-CEP-1347

Pulsating in the first ($P_{10}=$ 0.69 d) and second overtone $\left(P_{20}=0.556 d\right)$ modes

$$
\begin{gathered}
q=m_{2} / m_{1} \approx 0.553 \text { (Pilecki et } \\
\text { al. 2022) }
\end{gathered}
$$

MESA-RSP

= Model the complete system + distance + reddening

- Cepheid
- Companion
- Both componets

Espinoza-Arancibia et al. in prep.

Conclusions

Conclusions

Useful tool to constrain theoretical models and physical parameters

Espinoza-Arancibia et al. In prep.

Conclusions

The 6th Young Astronomers Meeting at CAMK PAN

