The 6th Young Astronomers Meeting at CAMK PAN

Classical Cepheids: Laboratories of Stellar Astrophysics

Felipe Espinoza Arancibia

About me

- I'm from Calama, in the north of Chile
- Undergraduate and master's degree in Astrophysics at Pontificia Universidad Católica de Chile
- 3rd year student at CAMK-PAN under the supervision of Bogumił Pilecki
- > I have 4 cats & & & &
- > My work focus on Classical Cepheids

Delta Cephei was discovered to be variable by John Goodricke during 1784.

- Delta Cephei was discovered to be variable by John Goodricke during 1784.
- In 1912, Henrietta Leavitt discovered that variables with longer periods had brighter magnitudes.

 $M = a + b \log P$

M: absolute magnitude a, b: constants P: pulsating period

- Delta Cephei was discovered to be variable by John Goodricke during 1784.
- In 1912, Henrietta Leavitt discovered that variables with longer periods had brighter magnitudes.
- Currently, there is a massive amount of data e.g. The Optical Gravitational Lensing Experiment (OGLE) presented a nearly complete census of classical Cepheids in the Magellanic System.

Soszyński et al., 2015, Acta Astronomica, 65, 297

- Delta Cephei was discovered to be variable by John Goodricke during 1784.
- In 1912, Henrietta Leavitt discovered that variables with longer periods had brighter magnitudes.
- Currently, there is a massive amount of data e.g. The Optical Gravitational Lensing Experiment (OGLE) presented a nearly complete census of classical Cepheids in the Magellanic System.

We need to understand all this data!

Soszyński et al., 2015, Acta Astronomica, 65, 297

Located in the classical instability strip (IS)

 κ : Represents ability of stellar material to absorb radiation

 κ : Represents ability of stellar material to absorb radiation

Classical Cepheids: Laboratories of Stellar Astrophysics

Instability strip

Double-lined binary systems

https://docs.mesastar.org/en/release-r24.03.1/

The 6th Young Astronomers Meeting at CAMK PAN

MESA

Empirical instability strip for classical Cepheids I. The LMC Galaxy

Espinoza-Arancibia et al. 2024, A&A, 682, A185

The 6th Young Astronomers Meeting at CAMK PAN

Empirical ISs of both samples show a break

The 6th Young Astronomers Meeting at CAMK PAN

Empirical ISs of both samples show a break

Comparison with evolutionary tracks suggests that below the break we expect a high fraction of 1st crossing Cepheids

Summer Student Program 2023

Student: Matylda Łukaszewicz (UW)

Maybe it will be repited this year

Empirical ISs of both samples show a break

Comparison with evolutionary tracks suggests that below the break we expect a high fraction of 1st crossing Cepheids

Good agreement with other theoretical results

The 6th Young Astronomers Meeting at CAMK PAN

Pilecki B., Thompson, I. B., Espinoza-Arancibia, F. et al. 2022, ApJL, 940, L48

Pilecki B. et al. 2021, ApJ, 910, 118

OGLE-LMC-CEP-1347 Pulsating in the first ($P_{1o} = 0.69 d$) and second overtone ($P_{2o} = 0.556 d$) modes

The orbital period ($P_{orb} = 59 d$) of the system is five times shorter than the shortest known to date for a binary Cepheid

Pilecki B., Thompson, I. B., Espinoza-Arancibia, F. et al. 2022, ApJL, 940, L48

OGLE-LMC-CEP-1347 Pulsating in the first ($P_{1o} =$ 0.69 d) and second overtone ($P_{2o} = 0.556 d$) modes

 $q = m_2/m_1 \approx 0.553$ (Pilecki et al. 2022)

The 6th Young Astronomers Meeting at CAMK PAN

Espinoza-Arancibia et al. in prep.

The 6th Young Astronomers Meeting at CAMK PAN

Espinoza-Arancibia et al. in prep.

OGLE-LMC-CEP-1347 Pulsating in the first ($P_{1o} = 0.69 d$) and second overtone ($P_{2o} = 0.556 d$) modes

 $q = m_2/m_1 \approx 0.553$ (Pilecki et al. 2022)

MESA-RSP

= Model the complete system + distance + reddening

Espinoza-Arancibia et al. in prep.

Conclusions

The 6th Young Astronomers Meeting at CAMK PAN

Conclusions

Useful tool to constrain theoretical models and physical parameters

The 6th Young Astronomers Meeting at CAMK PAN

Espinoza-Arancibia et al. In prep.

Conclusions

The 6th Young Astronomers Meeting at CAMK PAN

https://users.camk.edu.pl/fespinoza/