## CHemical Survey analysis System (CHESS)

## Similarity Analysis on clusters

John Eduard Martínez Fernández

Supervisor: Rodolfo Smiljanic
Collaborators: Sergen Özdemir, André Rodrigo da Silva

## About me

Born in Colombia but grew up in Spain.

- Bachelor's degree in Physics

Universidad Complutense de Madrid

- Master's degree in Astrophysics Universidad Complutense de Madrid



UNIVERSIDAD COMPLUTENSE MADRID

- 3rd year PhD student on SAGA team

Nicolaus Copernicus Astronomical Center (CAMK).

The main goal of my research is to investigate and advance the study of open clusters. I will explore the concepts of chemical tagging and the evolution of the radial chemical abundances within the Milky Way. In collaboration with our group (SAGA), we are developing a pipeline to process large volumes of spectra from spectroscopic surveys by applying the differential analysis technique with reference stars, providing precise and accurate chemical abundances.


OUTLINE
Open clusters
Globular clusters
CHESS Pipeline
Similarity analysis
Our sample
Results

## Open clusters

## Main characteristics:

- Stars formed from the same molecular cloud
- Low star density
- Found in the thin disk.
- Mostly young but can be old. They can have a wide range of ages.
- Common age and composition

It can be used to study stellar evolution; the chemical evolution of the Milky Way.


## Globular clusters

## Main characteristics:

- Spherical shape and high central densities
- Large and dense agglomerate of stars
- Old and the majority are metal-poor
- Their formation is not clear
- They consist of multiple stellar population stars

It can be used to study stellar dynamics:


## Science with open Clusters

## Chemical tagging

The idea is to group stars with similar chemical signatures

- All stars are born in clusters
- Every cluster should have a chemically homogeneous composition.
- Unique chemical signature in each cluster. In a large sample of field stars, we should be able to recover the original clusters where they were born.


Na All Mg Si Ca Sc Ti V CrMnCo Fe Ni Zn Y Ba

## Metallicity_gradient

Important in the study of the evolution and formation of the Galaxy as it offers observational constraints for models of chemical evolution.

- OCs show a slope change in the gradient, being flatter in the outskirts.
- OCs of different ages show us their evolution. There is no strong evidence for evolution.
- Outer regions are underrepresented.



## CHEmical Survey analysis System

 using the differential analysis technique on similar stars in a large sample of data.

This technique removes any possible systematic errors.
CHESS uses high-resolution spectra from UVES. I focus on OCs stars, but the final goal is to provide chemical abundances of all $\mathbf{F}$, $\mathbf{G}, \mathrm{K}$ stars found in the ESO ARCHIVE.

The basic workflow for the first part of the pipeline is:

- Crossmatching with external catalogues.
- Homogenize spectra.
- Find similar groups of spectra using ML techniques.
 $\because *$



## CHEmical Survey analysis System



# Similarity analysis: 

 t-SNE algorithm:> Credit: Mathias Grube

We need similar stars to perform differential analysis.

- Similar spectra mean similar atmospheric parameters (effective temperature, surface gravity and metallicity)
- Finding similar spectra would produce groups of similar stars without performing full radiative transfer

Using the t-SNE algorithm we can go from a space in multiple dimensions to a lower dimension space preserving local relationship between data points.


Spectra from the ESO Archive were observed with the UVES instrument.

- Performed a 20 arcmin cone search in each OC ( $\sim 8700$ spectra from ~ 300 clusters)
- Crossmatched observed coordinates of the spectra with external catalogs
- Crossmatch with Simbad and Gaia DR3 for target identification ( ~ 8600 spectra correctly identified, ~ 1900 stars)
- OCs list and stars membership probability obtained from the CantatGaudín (2020) catalog.
- Spectra homogenization. Radial velocity correction, normalization, ...

The benchmark spectra are homogenized in the same way as our sample.

- Sun (UVES spectra)
- Gaia golden sample (Gaia Collaboration et al. 2023)
- Gaia benchmarks (Soubiran et al. 2023)
- Titans I (Giribaldi et al. 2021)
- Titans II (Giribaldi et al. 2023)
- Gaia-ESO K2 sample (Worley et al. 2020)
- MOBA type stars (Pancino et al. 2017)


## Benchmark sample



## t-SNE map

Example region from the Open Cluster sample. - From 480 to 490 nm.

Focusing on the spectra similar to the Sun.



t-SNE map

Image Credit: NASA, ESA and G. Gilmore

## Preliminary results: Metallicity grad̈ieñt

Metallicity gradient using metallicity values obtained by Andrae et al. 2023. Using only the OCs members that we find in our sample.

- The gradient with this data seems to be more metal poor
- It could be a lack of data at larger Rgc, change in slope disappears


The values are the median metallicity of the stars with Teff < 5000 K and $\log \mathrm{g}<3$.
With CHESS, we expect to obtain better constraints for the Galactic radial metallicity gradient.

## Preliminary results: Mölecular bands' in GC

Multiple stellar populations

Stars with similar stellar parameters can have light chemical variations that can be seen in molecular bands.

Light element abundances show correlations and anticorrelations in stars from globular clusters.


## Summary

- Using t-SNE over all the spectra seems to be working to separate make groups of similar spectra
- Catalogues of external parameters seem to confirm that t-SNE separates stars with different stellar parameters
- The benchmark sample is also useful for detecting groups of stars that we cannot fully trust their tabulated parameters
- Projection map of $t$-SNE separates bad spectra from the rest


## THANK YOU FOR YOUR ATTENTION!

