Uncertainties on the evolutionary tracks of medium mass stars

Oliwia Ziółkowska 4th year PhD student

supervisor: Radek Smolec

Rajeev Singh Rathour Vincent Hocdé

Our group

Classical Cepheids as testbeds for stellar evolution and pulsation theories

Radek Smolec - Radial Stellar Pulsations (RSP), MESA developer, constructing a huge grid of evolutionary models of Cepheids

Vincent Hocdé - Estimates for metallicity of Cepheids from the shape of light curves, evolution of the Cepheid Y Oph, radial velocity curves

Rajeev Singh Rathour - Finding pulsation flavours in Cepheids, Non-evolutionary period changes

Oliwia Ziółkowska - Uncertainties on evolutionary tracks of medium mass stars, Cepheids in double-lined eclipsing binaries

Our group - Rajeev Singh Rathour

Classical Cepheids

- $\star\,$ young, medium mass stars (~ 3-14 $M_{\odot});$
- classical pulsators, crossing the instability strip (IS) 3 times;
- most of them are on the blue loop, burning helium in the core;
- pulsate radially with high amplitudes;
- period-luminosity relation;
- excellent laboratories for evolution and pulsation theories;

Jeffery&Saio (2016)

More about them in Felipe's talk tomorrow morning!

Motivation

- * free parameters;
- * simplified descriptions of physical effects;
- * many, equally valid recipes for microphysics.
- * The goal: estimate uncertainties rising from this freedom.

MESA

- * Modules for Experiments in Stellar Astrophysics v. r.21.12.1;
- $\star\,$ Calculated models for M=2-15 M_{\odot} and Z=0.0014, 0.004, 0.014,
- $\star\,$ for two values of overshooting from the convective core on the main sequence f = 0.00, 0.02

Reference tracks calculated with MESA

VI Young Astronomers Meeting

Evolutionary tracks calculated with MESA

For each M, Z we have a reference model and 22 other models (grey) from various sets.

Set	Varied options	
RES_A	<pre>time_delta_coeff = 0.50 + mesh_delta_coeff = 0.50</pre>	
RES_B	<pre>time_delta_coeff = 0.25 + mesh_delta_coeff = 0.50</pre>	
RES_C	<pre>time_delta_coeff = 0.50 + mesh_delta_coeff = 0.25</pre>	
RES_D	<pre>time_delta_coeff = 0.25 + mesh_delta_coeff = 0.25</pre>	
RES_E	<pre>time_delta_coeff = 1.00 + mesh_delta_coeff = 1.00 + default MESA resolution controls</pre>	
MLT_A	Henyey (Henyey et al. 1965)	
MLT_B	ML1 (Böhm-Vitense 1958)	
MLT_C	Cox (Cox & Giuli 1968)	
MLT_D	Mihalas (Mihalas 1978)	
ATM_A	model atmosphere tables (Hauschildt et al. 1999a,b; Castelli & Kurucz 2003)	
ATM_B	$T - \tau$ relation Eddington	
ATM_C	$T - \tau$ relation Krishna_Swamy (Krishna Swamy 1966)	
ATM_D	$T - \tau$ relation solar_Hopf (Paxton et al. 2013)	
ATM_E	$T - \tau$ relation Trampedach_solar (Ball 2021; Trampedach et al. 2014)	
NET_A	$^{12}C(\alpha, \gamma)^{16}O$ from Kunz et al. (2002) + $^{14}N(\alpha, \gamma)^{15}O$ from Cyburt et al. (2010) + pp_and_cno_extras.net	
NET_B	${}^{12}C(\alpha, \gamma){}^{16}O$ from Kunz et al. (2002) + ${}^{14}N(\alpha, \gamma){}^{15}O$ from Cyburt et al. (2010) + mesa49.net	
NET_C	${}^{12}C(\alpha, \gamma){}^{16}O$ from Angulo et al. (1999) + ${}^{14}N(\alpha, \gamma){}^{15}O$ from Cyburt et al. (2010) + pp_and_cno_extras.net	
NET_D	$^{12}C(\alpha, \gamma)^{16}O$ from Kunz et al. (2002) + $^{14}N(\alpha, \gamma)^{15}O$ from Angulo et al. (1999) + pp_and_cno_extras.net	
NET_E	$^{12}C(\alpha, \gamma)^{16}O$ from Angulo et al. (1999) + $^{14}N(\alpha, \gamma)^{15}O$ from Angulo et al. (1999) + pp_and_cno_extras.net	
CONV_A	Predictive Mixing + Schwarzschild criterion	
CONV_B	Predictive Mixing + Ledous criterion	
CONV_C	Sign Change + Schwarzschild criterion	
CONV_D	Predictive Mixing + Schwarzschild criterion + including predictive mixing in the envelope	
MIX_A	Asplund et al. (2009)	
MIX_B	Grevesse & Sauval (1998)	
MIX_C	Grevesse & Noels (1993)	
DIFF_A	atomic diffusion off	
DIFF_B	atomic diffusion on	
INT3_A	cubic interpolation of opacity tables off	
INT3_B	cubic interpolation of opacity tables on	

Benchmark points

We estimate uncertainties at 8 specific stages of evolution:

- * mMS (middle of Main Sequence)
- * TAMS (Terminal Age Main Sequence)
- ★ bRGB (base RGB)
- ★ tRGB (tip RGB)
- * CHeBb (Core Helium Burning, begin)
- CheBm (Core Helium Burning, middle)
- * CheBe (Core Helium Burning, end)
- * mIS (middle of Instability Strip)

Uncertainties at TAMS - example

RES	$\bigcirc Z = 0.0140$
MLT	$\Delta Z = 0.0040$
ATM	$\Box Z = 0.0014$
NET	
CONV	$f_{ m H}{=}0.00$
MIX	
DIFF	
INT3	

VI Young Astronomers Meeting

Evolution of the uncertainties

Median from all masses and metallicities; moderate vs. no overshooting

Conclusions for lower masses

- $\star\,$ No clear trends with M and Z;
- For T_{eff} and L the biggest uncertainties appear for convective boundaries and nuclear reactions;
- * Uncertainties during CHeB are the highest;
- * The effects of core overshoot are strong at all evolutionary phases;

Higher masses - lack of convergence

Higher masses - lack of convergence - thin convective shells

Conclusions for higher masses

 More massive models need to be investigated carefuly with Kippenhahn diagrams to asses how severe the thin shell problem is for a given M,Z and how it affects subsequent evolution;

* Analysing the differences of surface CNO abundances is a very challenging task. Quite often there is no clear systematics across M,Z and evolutionary phase