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Our group

Classical Cepheids as testbeds for stellar evolution and pulsation
theories

Radek Smolec - Radial Stellar Pulsations (RSP), MESA developer,
constructing a huge grid of evolutionary models of Cepheids

Vincent Hocdé - Estimates for metallicity of Cepheids from the shape
of light curves, evolution of the Cepheid Y Oph, radial velocity curves

Rajeev Singh Rathour - Finding pulsation flavours in Cepheids,
Non-evolutionary period changes

Oliwia Ziółkowska - Uncertainties on evolutionary tracks of medium
mass stars, Cepheids in double-lined eclipsing binaries
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Our group - Rajeev Singh Rathour
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Classical Cepheids

⋆ young, medium mass stars
(∼ 3-14 M⊙);

⋆ classical pulsators, crossing the
instability strip (IS) 3 times;

⋆ most of them are on the blue loop,
burning helium in the core;

⋆ pulsate radially with high
amplitudes;

⋆ period-luminosity relation;

⋆ excellent laboratories for
evolution and pulsation theories;

Jeffery&Saio (2016)

More about them in Felipe’s talk tomorrow morning!

VI Young Astronomers Meeting 4/16



Motivation

⋆ free parameters;
⋆ simplified descriptions of physical effects;
⋆ many, equally valid recipes for microphysics.

⋆ The goal: estimate uncertainties rising from this freedom.

⋆ Modules for Experiments in Stellar Astrophysics v. r.21.12.1;
⋆ Calculated models for M=2-15 M⊙ and Z=0.0014, 0.004, 0.014,
⋆ for two values of overshooting from the convective core on the main

sequence f = 0.00, 0.02
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Reference tracks calculated with MESA
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Evolutionary tracks calculated with MESA
For each M,Z we have a reference model and 22 other models (grey)
from various sets.
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Benchmark points

We estimate uncertainties at 8 specific stages of evolution:

⋆ mMS (middle of Main Sequence)

⋆ TAMS (Terminal Age Main Sequence)

⋆ bRGB (base RGB)

⋆ tRGB (tip RGB)

⋆ CHeBb (Core Helium Burning, begin)

⋆ CheBm (Core Helium Burning,
middle)

⋆ CheBe (Core Helium Burning, end)

⋆ mIS (middle of Instability Strip)
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Uncertainties at TAMS - example
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Evolution of the uncertainties
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Median from all masses and metallicities; moderate
vs. no overshooting
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Conclusions for lower masses

⋆ No clear trends with M and Z;

⋆ For Teff and L the biggest uncertainties appear for convective
boundaries and nuclear reactions;

⋆ Uncertainties during CHeB are the highest;

⋆ The effects of core overshoot are strong at all evolutionary phases;
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Higher masses - lack of convergence
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Higher masses - lack of convergence - thin convective
shells
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Conclusions for higher masses

⋆ More massive models need to be investigated carefuly with
Kippenhahn diagrams to asses how severe the thin shell problem is
for a given M,Z and how it affects subsequent evolution;

⋆ Analysing the differences of surface CNO abundances is a very
challenging task. Quite often there is no clear systematics across M,Z
and evolutionary phase
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