Science with gravitational waves in the era of LIGO-Virgo-KAGRA discoveries

Michał Bejger

6.3.24

LIGO-Virgo(-KAGRA) global detector network

Very precise rulers: measuring distances between free-falling bodies with laser light.

Compact objects population in GWTC-3 (O1, O2, O3)

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

 ${\sim}200$ events until now (including O4), and counting...

GW spectrum of binaries (e.g., BBH, BNS)

Phase evolution may differ from point-particle description because of extended-body interactions:

$$\Psi(f) = \Psi_{PP}(f) + \Psi_{tidal}(f)$$

Binary system waveform: 15+ parameters

- Intrinsic: Ĺ masses spins tidal deformability Η1 Extrinsic: りょ Inclination, distance, polarisation
 - Sky location
 - Time, reference phase

Astrophysically-interesting parameters

Intrinsic:

- * Chirp mass $\mathcal{M} = \left(\mu^3 M^2\right)^{1/5} = (m_1 m_2)^{3/5} / (m_1 + m_2)^{1/5}$,
- * Mass ratio $q = m_2/m_1$ (at 1PN), alternatively $\nu = m_1 m_2/(m_1 + m_2)^2$,
- $\star\,$ Spin-orbit and spin-spin coupling (at 2PN and 3PN, resp.) $\rightarrow\,$

 $\chi_{eff} = (m_1\chi_{1z} + m_2\chi_{2z})/(m_1 + m_2)$

where χ_{iz} are spin components along system's total angular momentum,

 $\star~$ Tidal deformability $\Lambda~(at~5PN) \rightarrow$

$$ilde{\Lambda} = rac{16}{13} rac{(m_1 + 12m_2)m_1^4 \Lambda_1}{(m_1 + m_2)^5} + (1 \leftrightarrow 2), \qquad \mathcal{R} = 2\mathcal{M} ilde{\Lambda}^{1/5}$$

Extrinsic:

 Direct "luminosity" ("loudness") distance: binary systems are "standard sirens".

Taxonomy of signal and search types

Waveform known High ins	nic string p / kink -mass piral	NS / BH ringdown	Low-mass inspiral	Asymmetric spinning NS LISA binary
	p			
Binar Ste Waveform unknown	ry merger ellar core c	No Rot collapse ???	ewborn NS tation-driven instability ???	Cosmological stochastic background Astrophysical stochastic background

courtesy of Peter Shawhan

Taxonomy of signal and search types

courtesy of Peter Shawhan

Matched filter in pictures

- * With the data s(t) = n(t) + h(t),
- \star signal template $h_t(t)$ and
- ★ one-sided amplitude spectral density of the noise $S_n(f)$, defined as $\langle \tilde{n}(f)\tilde{n}^*(f')\rangle = \frac{1}{2}S_n(|f|)\delta(f-f')$,

the matched filter is an inner product

$$(s|h) = 2 \int_{-\infty}^{\infty} \frac{\tilde{s}(f)\tilde{h}_t^{\star}(f)}{S_n(f)} df$$

Machine learning in GW astronomy

- * Signal detection and classification,
- \star Parameter estimation,
- * Data cleaning (denoising),
- \star Discovering relations and patterns in data,
- * Forecasting / prediction.

Data denoising using Denoising AutoEncoders Neural Networks arXiv:2205.13513

Machine learning in GW astronomy

Patterns in the EM observations of neutron stars M(R), and GW $\mathcal{M}_c(\mathcal{R})$:

 $\mathcal{M}_{c}(\mathcal{R})$, "binary system" analog to M(R):

- * Chirp mass $\mathcal{M} = (\mu^3 M^2)^{1/5} = (m_1 m_2)^{3/5} / (m_1 + m_2)^{1/5}$,
- * Mass-weighted tidal deformability $\tilde{\Lambda} = \frac{16}{13}(m_1 + 12m_2)m_1^4\Lambda_1/(m_1 + m_2)^5 + (1 \leftrightarrow 2), \qquad \mathcal{R} = 2\mathcal{M}\tilde{\Lambda}^{1/5}$

Science with gravitational waves in the era of LIGO-Virgo-KAGRA discoveries

Interplay between

observations (data analysis,

also using ML), theory

(astrophysics) and

computation (efficient

computational methods).

- Monitoring of sensor network and analysis of seismic and infrasound data
- 2 Monitoring of magnetic noise and its influence on gravitational wave detectors
- 3 Development of data analysis methods and search for long-duration signals in the all-sky survey
- 4 Development of a narrow-band search pipeline using the F-statistic and optimal grids
- 5 Search for gravitational waves from r-mode instabilities in pulsar J0537-6910
- 6 Methods to search for gravitational waves from postmerger stage of compact binary coalescences

8 Measuring the core-collapse supernova engine dynamics with GWs

- Models of extreme-matter GW sources as input to GW data analysis
- 10 Formation and properties of compact object binaries

Science with gravitational waves in the era of LIGO-Virgo-KAGRA discoveries

Future detectors (LIGO/Virgo+, ET, CE) will reach farther in distance, and broader in frequency:

- \star long inspirals and post-merger signals,
- \star unmodeled signal types,
- \star weak/complicated/overlapping signals.

We design efficient ways to

- \star improve long-duration GW searches: post-processing with ML,
- $\star\,$ searches for GWs with complicated signal morphology,
- $\star\,$ analyse population of GW signals to uncover details of the dense matter EOS,
- $\star\,$ calculate models of neutron stars with specific dense-matter features as components of GW sources.

If you are interested in GW astronomy, contact me bejger@camk.edu.pl or Brynmor Haskell bhaskell@camk.edu.pl

