

How binary mass transfer forms black hole mergers

Jakub Klencki

ESO Fellow

Credit: Shenar+(2022)/ I.Mayo / S.Pinilla

Credit: NASA/CXC/M.Weiss

Artwork by Sandbox Studio Chicago with Corinne Mucha

CAMK, Warsaw, Aug 22nd 2024

MODEST 2024

From massive stars to gravitational-wave sources

Jakub Klencki

Belczynski + 2016

From massive stars to gravitational-wave sources

Jakub Klencki

graphic by Wojtek Gładysz & Belczynski+16

<u>Common-envelope</u> \rightarrow a way to form close-orbit systems

Idea by Paczyński (1976), in communication with Webbink, Ostriker

Sketch from MacLeod 2017, recent review: Ivanova, Justham, Ricker (2020)

From massive stars to gravitational-wave sources

From massive stars to gravitational-wave sources

Q1: What are BH-BH orbital separation from stable MT?

- \rightarrow delay times & host galaxy predictions
- \rightarrow BH spins (very small separation => high spin)

Q1: What are BH-BH orbital separation from stable MT?

- \rightarrow delay times & host galaxy predictions
- \rightarrow BH spins (very small separation => high spin)

- \rightarrow link to stellar astrophysics
- \rightarrow BH mass range

Stable MT from M_{donor} > M_{accretor} shrinks the orbit

Stable MT from M_{donor} > M_{accretor} shrinks the orbit

Post-mass transfer orbits? Analytical prediction

 $10~M_{\odot}$ BH + star

Post-mass transfer orbits? Analytical prediction

<u>There is a limit</u>: minimum separation from stable mass transfer ~ 10 R_{\odot}

JK+(to be subm.)

The limit does not disappear even if we significantly boost the orbital shrinkage!

Example:

by L2 outflows carrying lots of orbital angular momentum

From massive stars to gravitational-wave sources

Jakub Klencki

JK+ in prep, also Olejak, JK+24

Minimum separation depends on the donor star

 \bigstar

core-He burning
blue supergiant

unstable mass transfer

0

-2

-3

-4

-5

-6

log(M / M₀ yr

Minimum separation depends on the donor star

Minimum separation depends on the donor star

Donor star:

Minimum separation depends on the donor star

Donor star:

Stars that do not work? (yellow)

Stars that do not work? (yellow)

Huge variation with stellar models(!)

high semiconvection

low semiconvection

Stars that do not work? (yellow)

Stars that do not work? (yellow)

From massive stars to gravitational-wave sources

- Stellar winds at low metallicity
- Spectra & ionizing feedback of massive hot stars
- Chemically homogeneous evolution?

Vink et al. 2023

From Discovery to a Population

orentz

- Stellar multiplicity at subsolar metallicity (SMC)
- Mass transfer & stellar interaction products

Shenar, Bodensteiner et al. 2024

'Hotberg' collaboration

- Discovering helium stars across environments
- He stars in X-ray binaries, supernovae, GW sources, high-z Universe

Klencki, Laplace, Gotberg, Simon-Diaz, Degenaar

Summary

Binary mass transfer channels may drop off going to higher masses

 \rightarrow common envelope: M_{BH} <~ 15 M_o

Minimum orbital separation from stable MT ~10 R_{a}

- \rightarrow determined by the <u>internal structure of the star</u>, not AM loss
- → long BBH delay times (>1-5 Gyr), small effective spins possible exception: unequal mass BBHs (q ~ 0.5)

Extra slides

Post-interaction binaries

Just the tip of the iceberg?

Prediction:

~ 1% of the Main Sequence are partially-stripped stars (Dutta & JK 24) (more at low Z & beyond TAMS? JK+22)

<u>Debasish Dutta</u> (IITP, India → ISTA 09/24)

Need: large spectroscopic samples

- → 40000 massive stars in the Milky Way (<2030, IACOB, WEAVE, 4MOST)
- → 1000 massive stars in the SMC (BLOeM collaboration)

Various evidence: mixing increases with mass

Effect: very massive stars never expand

Formation of Gaia BH3

Problem for binary evolution only if common envelope cannot be avoided

El-Badry 2024

It can be solved if the BH progenitor star stayed compact < 300 Rsun (mixing, case B merger)

Giant stellar mergers products do not expand

Amedeo Romagnolo

GW population models likely overpredict the CE channel

Romagnolo+ (2022, 2024 in prep), also Marchant+21, Gallegos-Garcia+21

Major question for CE: what is the final separation?

Simulation: no real answer **Observations:** no massive post-CE systems (yet)

Moreno+22

Major question for CE: what is the final separation?

Wei+2023 : depending on the disk mass & lifetime, a circumbinary disk can completely change the post-CE orbit

also: Gagnier+23,24, Tuna & Metzger+23