

THE ONES THAT GOT AWAY FORMATION AND EVOLUTION OF INTERMEDIATE-MASS BLACK HOLES IN MASSIVE STAR CLUSTERS

Benedetta Mestichelli - MODEST24

In collaboration with: Michela Mapelli, Manuel Arca Sedda, Marica Branchesi, Sara Rastello, Stefano Torniamenti

MASSIVE STAR CLUSTERS

Westerlund 2 - NASA, ESA

YOUNG MASSIVE CLUSTERS

- YOUNG GLOBULAR CLUSTERS
- $M_{\rm tot} \lesssim 10^6 \,{\rm M}_{\odot}$
- AGE ~ $10^2 \,\mathrm{Myr}$

 ω Centauri - ESO

GLOBULAR CLUSTERS

- $M_{\rm tot} \lesssim 10^6 \,{\rm M}_\odot$ $AGE \sim 10 \,{\rm Gyr}$

WHAT HIDES AT THEIR CENTER?

Intermediate-mass black hole (IMBH) with $m_{\rm BH} \sim 10^3 - 10^4 \, {\rm M_{\odot}}$

Recent observation of IMBH in @ Centauri

GW190521 (?)

 ω Cen IMBH - Häberle et al. 2024

HOW DO WE FORM AN IMBH?

FAST SCENARIO

STELLAR RUNAWAY COLLISIONS (Portegies Zwart & McMillan 2002)

Formation of very massive star (VMS)

Final IMBH with $m_{\rm BH} \sim 0.1 \ \% M_{\rm tot}$

SLOW SCENARIO

HIERARCHICAL MERGERS (Miller & Hamilton 2002)

Central BH $\gtrsim 50 \, \mathrm{M}_{\odot}$

Mergers with mass-segregated BHs

IMBH of $\sim 10^3 \,\mathrm{M_{\odot}}$ in $\sim 10\,\%$ clusters

NOT THAT EASY...

FAST SCENARIO

STELLAR RUNAWAY COLLISIONS (Portegies Zwart & McMillan 2002)

- Massive clusters usually have $t_{\rm rlx} \gtrsim 100 \, {
 m Myr}$
- Dependence on density
- Dependence on metallicity

SLOW SCENARIO

HIERARCHICAL MERGERS (Miller & Hamilton 2002)

- High relativistic kicks ($v_{kick} > v_{esc}$)
- Dependence on cluster mass and density
- Dependence on metallicity

IS IT POSSIBLE TO FORM IMBHs IN MASSIVE STAR CLUSTERS WITH LOW DENSITY?

IS IT POSSIBLE TO FORM IMBHs IN MASSIVE STAR Clusters with low density? What is the main formation channel?

IS IT POSSIBLE TO FORM IMBHs IN MASSIVE STAR Clusters with low density? What is the main formation channel? What are their properties?

METHODS

Wang et al. 2020; Mapelli et al. 2017

- N-body code
- Stellar evolution (MOBSE)
- Milky Way galactic potential (galpy)

Check out Lavinia's talk!

"Seeds to success: growing heavy black holes in dense star clusters"

INITIAL CONDITIONS

$100 \,\mathrm{Myr} \lesssim t_{\mathrm{rlx}} \lesssim 3 \,\mathrm{Gyr}$

Mestichelli et al. (in prep.)

11

EFFICIENCY OF REPEATED COL ISIONS

- Efficiency of collisions is **constant** with ρ_c
- Efficiency of repeated collisions grows with ρ_c
 - **Dependence** on t_{rlx} at high $\rho_{\rm c}$

Mestichelli et al. (in prep.)

FRACTION OF VMSs FROM COLLISIONS

Fraction of VMS from collisions + repeated collisions grows sharply at $ho_{\rm c} \sim 10^5 \, {\rm M_\odot \, pc^{-3}}$

At **lower** ρ_c most VMS are **born** with high mass

Mestichelli et al. (in prep.)

MASS SPECTRUM OF VMSs

Larger number of VMSs in highmass clusters

Maximum mass $\sim 200 \, \mathrm{M}_{\odot}$

Mestichelli et al. (in prep)

MASS SPECTRUM OF VMSs

Larger number of VMSs in highmass clusters

Maximum mass $\sim 200 \, \mathrm{M}_{\odot}$

VMSs COLLAPSING INTO IMBHs?

Mestichelli et al. (in prep)

IMBH LANDSCAPE

- Only two IMBHs from VMS collapse:
 - Mass loss due to PPISN
 - Mass loss due to common envelope events
- Most IMBH from BBH mergers: they all leave the cluster!

Mestichelli et al. (in prep.)

IMBH LANDSCAPE

- Only two IMBHs from VMS collapse:
 - Mass loss due to PPISN
 - Mass loss due to common envelope events
- Most IMBH from BBH mergers: they all leave the cluster!

Mestichelli et al. (in prep.)

SUMMARY

- Formation channels of IMBHs in massive clusters: runaway collisions and hierarchical mergers
- In N-body simulations with PeTar-MOBSE:
 - VMS fraction from stellar collisions low at $\rho_{\rm c} < 10^5 \,{\rm M}_{\odot}\,{\rm pc}^{-3}$
 - Large number of VMS at high M_{c1} but **only two collapsing into IMBH**
 - Most IMBH from BBH merger (no chain because of relativistic kicks!)

Benedetta Mestichelli - MODEST24 benedetta.mestichelli@gssi.it

REPEATED COLLISIONS

REPEATED COLLISIONS VS. RELAXATION TIME

VMS NUMBER VS CLUSTER MASS

