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GCs are spatially intact tracers of the 
MW’s history
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What do GCs provide that field stars do not?
Label Transfer (Mackereth et al. 2019) SED Fitting (Godoy Rivera et al. 2021) Isochrone Fitting (Ying et al. 2023)

-0.5 < [Fe/H] < 0.5
10 +/- 3 Gyr

[Fe/H] ~ 0
6 +/- 1 Gyr

[Fe/H] < -2.5
13.8 +/- 0.75 Gyr

GCs provide the most accurate age 
estimates at the earliest times
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GCs are incredibly chemically complex Does a chemical tag exist between GCs and their 
host galaxies, across all metallicities?

GCs represent very efficient star 
formation

Do GCs accurately trace the star formation 
histories of their hosts?

Can we use precise abundances and ages from GCs 
to learn about the host star formation histories?

Complication Line of Investigation
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Highly radial, plunging orbits —> 
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Gaia-Sausage-Enceladus has a unique signature in [Eu/ ]α

[ /Fe] encodes 
star formation 

history

α

[Eu/Fe] encodes information on 
rare channels and mixing 

timescales

Matsuno et al. 2021, Aguado et al. 2021Helmi et al. 2018, Tolstoy et al. 2009
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GCs are incredibly chemically complex Does a chemical tag exist between GCs and their 
host galaxies, across all metallicities?

Complication Line of Investigation
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Globular clusters trace the r-process evolution of their hosts

Data from: Oh et al. (2023), 
Reggiani et al. (2021), Van der 
Swaelmen et al. (2013), 
Pompéia et al. (2008), 
Mucciarelli et al. (2008) and 
Mucciarelli et al. (2010) a, 
Reichart et al. 2020 Monty et al. 2024



Globular clusters trace the r-process evolution of their hosts

Globular clusters trace the chemical evolution of their 
hosts in [Eu/ ] across metallicityα

Data from: Oh et al. (2023), 
Reggiani et al. (2021), Van der 
Swaelmen et al. (2013), 
Pompéia et al. (2008), 
Mucciarelli et al. (2008) and 
Mucciarelli et al. (2010) a, 
Reichart et al. 2020 Monty et al. 2024
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In [Eu/ ], this seems 
to be the case

α

Europium is 
promising

Can GCs act as Chrono-chemo-dynamical Tracers?

GCs are incredibly 
chemically complex

Does a chemical tag exist between 
GCs and their host galaxies?

GCs represent very 
efficient star formation

Do GCs accurately trace the star 
formation histories of their hosts?

GCs as sub-Gyr timers of the chemical evolution 
of the GSE dwarf galaxy

Complication Line of Investigation Result
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GCs associated with the last major merger time its chemical 
evolution

The GSE GCs form the tightest sequence in [Eu/Si] seen as of yet
[Eu/Si] rise of 0.75 dex in GSE takes place over 2 Gyr

Accreted MW Field Stars
In-Situ MW Field Stars In-Situ Globular Clusters GSE Globular Clusters
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1. GCs trace the star formation histories of their hosts at all times in the ratio of [Eu/ ]α

2. GCs provide the tightest sequence in [Eu/ ] seen to-date, showing a clear rise to a 
plateau over a timescale of 2 Gyr in Gaia-Sausage-Enceladus (CARMA project will 
provide more precise timing)

α

3. This week, I would love to discuss if the lack of neutron star enrichment in GCs 
could help constrain: 

1. Primordial binary fraction and/or binary evolution in GCs

2. Delay time for neutron star mergers (destruction timescales for NSM 
progenitors in GCs?)

Summary

See arXiv:  2405. 8963 for more details
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Lessons from Field Stars: Star Formation Efficiency Alone 
Cannot Explain the Different Plateaus

Monty et al. in-prep
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Lessons from Field Stars: Star Formation Efficiency Alone 
Cannot Explain the Different Plateaus

The MW and GSE continue to 
diverge -> differences SFE not 

enough to explain offset
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Most likely in-situ GC which formed 
alongside M31
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