

Rotation and expansion in open clusters using simulations and Gaia DR3

arXiv:2404.05327

Vikrant Jadhav Humboldt Fellow, University of Bonn

Collaborators: P. Kroupa, W. Wu, J. Pflamm-Altenburg, I. Thies

MODEST 2024 Nicolaus Copernicus Astronomical Center, Warsaw

Background

- Rotation seen in >20 GCs (van Leeuwen+2000, Bianchini+2018, Szigeti+2021)
- Rotation in MW nuclear cluster (Schödel+2009)
- Linked with
 - Cluster flattening (Kacharov+2014)
 - Multiple stellar populations (Carretta+2009)
- Slower rotating GCs: Bluer HBs and lower [Fe/H] (Bellazzini+2012)
- ~10 OCs with rotation patterns (Guilherme-Garcia+2023, Hao+2024)
- Spin of cluster and its stars are aligned* in OC NGC 6791 (Kamann+2019)
 - Likely residual of GMC rotation
- High precision data availability: Gaia, APOGEE, LAMOST, GALAH... 4MOST, LSST...

Spinning cluster

- Pole on view
 - The proper motion shows rotation
- Edge on view
 - Half of the cluster is red/blue shifted

Jadhav I Spin in open clusters I MODEST 2024. Warsaw

Spin using RV

- Edge on view
- Assume a spin axis with PA
- Divide the cluster using the axis and calculate difference between the mean RV of two halves (ΔV)
- Maximize ΔV for various PA
- The RV vs radius gives ~v cos(i)

٠

Spin using PM

Δδ [deg]

• Split the PM in μ_T and μ_R

- Suited for polar view
- Change in µ_T with radius gives measure of ~ v sin(i)
- More error sensitive than RV

Solid body rotator Diffrential rotator Virialised & Noisy 1.5 1.0 0.5 0.0 -0.5 -1.0-1.55 pc 5 pc $^{-1}$ $^{-1}$ 1 0 1 0 0 μ_τ [km s⁻¹] $^{-1}$ -2 -3 2.5 5.0 7.5 2.5 5.0 7.5 0.

Sample selection: clusters

- Gaia DR3 OC catalog (Hunt+2023,2024)
 - Cluster identification using HDBSCAN
 - ~7000 star systems with members and parameters (age, mass, radius...)
- 1428 high quality open clusters with known space velocity
 - N_{stars} = 15 4000
 - Age = 3 − 4500 Myr
 - Distance = 50 9000 pc
- RV Data from Gaia DR3, APOGEE, GALAH, Gaia-ESO, LAMOST, RAVE

Spatial distribution of cluster sample

Correction for Solar motion

Example of NGC 6124

- Spin signature in RV distribution of NGC 6142
- Spin seen in 10 clusters (6 RV, 4 PM based) +16 candidates

Spin rates:
 10–170 cycles/Gyr

V. Jadhav

MODEST 2024. Warsaw

Spin in open clusters

Spin and its Orientation

- If the Galactic orbit/interaction is the main cause, the spin should have some correlation with the orbital angular momentum
 - There is no correlation
- No dependence on age, R_{GC} or number of stars

Cluster Expansion/Contraction

- Changes in µ_R with radius
- 18 expanding clusters

 (4% of clusters younger than 100 Myr)
- 3 contracting clusters Why?
 - Expansion cycles during the Virialization?
 - Ejection of stars in dense clusters (King1958)

Cluster Expansion/Contraction...

- Expansion rate-Age matches with simulations (Kroupa+2001)
 - Gas expulsion and mass loss through evolving stars
- No other dependence observed

N-body simulations

- Simulated ~2000 M_☉ OCs ~1 Gyr
- Including stellar evolution, pair instability, SNs, Galactic potential
- Synthetic observations of simulated clusters to identify spin
 - Recovering rotation signatures
 - Tidal tails always rotating, so stars within the tidal radius (~10 pc) are analyzed

Simulated clusters

PeTar (Wang+2020)

Binaries, IMF, N~2000, Stellar evo., SN kicks...

Phantom of Ramses (Lüghausen+2015, Kroupa+2022)

Equal mass particles, N~20000, Newtonian & MOND dynamics

Milgromian Law Dynamics (MLD; Pflamm-Altenburg+2024)

Equal mass particles, N~1000, MONDian dynamic 13

Spin in Simulations

- Initial L_z is negligible
- The clusters *slightly* spin aligned with the Galactic orbit
 - Iv cos(i)I ~ 0–5 cycle/Gyr
- Other mechanisms required to get the observed ~100 cy/Gyr spin

Source of spin

>0.6% open clusters have detectable spin

- Actual number would be higher
 - poor statistics; unsuitable inclination; limitation of the detection method
- For comparison: 20–30 (~15%) GCs have rotation signatures
- Observed spin rate: 10–170 cy/Gyr
 - Rotation around the MW and tidal tails have minimal effect (~ 5 cy/Gyr)
 - Molecular clouds have velocity gradients of ~30 cy/Gyr (Braine+2020)
 - Initial spin is integral
- Collisions with other clusters/GMCs/Spiral arms?

Outlook

- RV precision (and availability) is the primary limitation
- Better sample (waiting for Gaia DR4/5, LSST, WEAVE, 4MOST...)
- Simulations based on primordial spin and cluster-cluster interactions

Questions?

