

Painting by Alina Böcker

Dynamical mixing of multiple populations in globular clusters

Francisco I. Aros

In collaboration with Enrico Vesperini, Alexander Livernois, Emanuele Dalessandro & Tuila Ziliotto

MODEST 24 - August 20 Warsaw.

Multiple populations in GCs

See reviews by Gratton, Sneden & Carreta (2014); Bastian & Lardo (2018). Works by Piotto et al (2015); Milone et al. (2015); Milone et al. (2017)

Structural & Kinematic differences of MPOP in GCs

see also Richer et al. (2013); Bellini et al. (2015,2018); Cordero et al. (2017); Milone et al. (2018); Libralato et al. (2019); Cordoni et al. (2020a,b); Dalessandro et al. (2021); Leitinger et al. (2023)

Numerical simulations

see Vesperini et al. (2021), Livernois et al. (submitted), Aros et al. (in prep)

Initial concentration > $r_{h,P1}/r_{h,P2}$ = 20,10 Number of stars > 2M, 1M, 500K Tidal field > strong, weak Primordial anisotropy > isotropic, O-M anisotropy

see also D'Ercole et al. (2008); Bekki (2011); Bekki et al. (2017); Calura et al. (2019); Lacchin et al. (2021, 2022) and Mastrobuono-Battisti & Perets (2013, 2016); Hénault-Brunet et al. (2015); Tiongco et al. (2019); Vesperini et al. (2021); Sollima (2021).

Mixing in phase-space Aros et al. (in prep)

*the talk included the animated version.

Quantifying the degree of mixing

Aros et al. (in prep)

Velocity anisotropy and angular momentum Aros et al. (in prep)

Isotropic and radially anisotropic King models built with **limepy**; see Gieles & Zocchi (2015)

Tracing mixing with angular momentum Aros et al. (in prep)

Phase-space mixing and projected quantities

Summary

>We have a general view of population mixing by looking at the energy-angular momentum space.

>Differences in velocity anisotropy follow the same overall evolution, but they might conserve differences in initial conditions.

>These differences are less apparent on the projected angular momentum distribution (effects of rotation in follow-up work).

>Spatial and kinematic mixing happens at different rates. We do not see any clear signature of the initial POP02 concentration in the A_2^+ parameter after one relaxation time. Kinematic differences persist for a longer time.

Extra slides

Phase-space distributions: N2M, N1M, N05M and N05M-wf Aros et al. (in prep)

Phase-space distributions: N1M-ra,N2M-r10, N1M-r10

Aros et al. (in prep)

Evolution of A_2^+ Parameter

Aros et al. (in prep)

