2024/08/19 Modest24 @ Nicolaus Copernicus Astronomical Center, Warsaw, Poland

Orbital Evolution of S Stars Due to Resonant Relaxation

Yoko Funato (Univ. of Tokyo) Hina Kitakubo (ex Kobe University) Junichiro Makino (Kobe University)

Summary

- We performed N-body simulations of dynamical evolution of the stellar system around the MBH at the Center of the Galaxy.
- Orbits of S stars evolve from their initial Kepler orbits
- Precession and inclination evolution take place.
- The evolution of inclination is due to RR only.
- We find dependence of the evolution of inclination on cluster properties such as its mass and N.
- Further observation of inclination evolution of ${\cal S}$ stars will be a clue to above properties.

Contents

- **1.** Introduction
- 2. Model & Method
- **3.** Result
- **4.** *Summary*

Center of the Galaxy and Orbit of S2 star

Galactic Center

Orbit of S2

GRAVITY Colab. 2020 A&A $\Delta \phi = 0.003$ [rad/P]

(c)Andrea Ghez

Parameter	Value	Fit	MCMC	Unit
0		ciioi	ciioi	
$f_{\rm SP}$	1.10	0.19	0.21	
$f_{\rm RS}$	1	Fixed	Fixed	
M_{\bullet}	4.261	0.012	0.012	10^6M_\odot
R_0	8246.7	9.3	9.3	pc
a	125.058	0.041	0.044	mas
е	0.884649	0.000066	0.000079	
i	134.567	0.033	0.033	0
ω	66.263	0.031	0.030	0
Ω	228.171	0.031	0.031	0
Р	16.0455	0.0013	0.0013	yr
t _{peri}	2018.37900	0.00016	0.00017	yr
x_0	-0.90	0.14	0.15	mas
<i>y</i> 0	0.07	0.12	0.11	mas
vx_0	0.080	0.010	0.010	$mas yr^{-1}$
vy_0	0.0341	0.0096	0.0096	mas yr ⁻¹
VZ_0	-1.6	1.4	1.4	$\rm kms^{-1}$

Table E.1. Best-fit orbit parameters.

Notes. The orbital parameters are to be interpreted as the osculating orbital parameters. The argument of periapsis ω and the time of pericentre passage t_{peri} are given for the epoch of last apocentre in 2010.

$$\boldsymbol{a} = -\frac{GM}{r^3}\boldsymbol{r} + f_{\rm SP}\frac{GM}{c^2r^2} \left[\left(4\frac{GM}{r} - v^2 \right) \frac{\boldsymbol{r}}{r} + 4\dot{r}\boldsymbol{v} \right] + O[J] + O[Q_2].$$
(C.1)

the (first-order) parameterized post-Newtonian (PPN) expansion of GR

-

Resonant Relaxation (RR)

- theoretically predicted by Rauch & Tremaine 1996
 - relaxation in angular momentum space
 - different relaxation from two-body relaxation
 - takes place in N-body systems which contains a massive object at the center and its gravitation dominates the system.

ex.1: planetary system with a host star *ex.2:* central region of a nuclear star cluster containing an SMBH

characteristic properties of RR

Timescale :

•
$$t_{\rm rr} \sim \frac{m_{\rm BH}}{m_*} t_{\rm orb}$$

- each star:
 - $\Delta E \sim 0$
 - $\Delta L \sim t$

consequently

*
$$\Delta \phi \sim t$$

* $\Delta i \sim t$

characteristic properties of RR

Timescale :

•
$$t_{\rm rr} \sim \frac{m_{\rm BH}}{m_*} t_{\rm orb}$$

- each star :
 - $\Delta E \sim 0$
 - $\Delta L \sim t$
 - consequently

*
$$\Delta \phi \sim t$$

* $\Delta i \sim t$

- statistical behavior :
 - $\sqrt{<|\Delta E|^2>}\sim 0$

•
$$< \Delta L > \sim 0$$

•
$$\sqrt{<|\Delta L|^2>} \sim t$$

consequently

$$\begin{array}{l} \star \sqrt{|\Delta \phi|^2} \sim t \\ \star \sqrt{|\Delta i|^2} \sim t \end{array}$$

<> ... average of particles

2.1 Model& Initial Condition

density profile

(T.Matsubayashi+ 2007)

- M_{SMBH} : fix
- r_0 (scale length) : fix
- *M*_{cluster}: changing *max:* observational upper limit (Abuter+ 2020) *min:* theoretical prediction (Alexander+ 2009)
- N : changing (i.e.mass ratio : M_{SMBH} : M_{star})
- *GR* : **w/wo**
- 20 different seed run/model

2.2 Numerical Method

GPLUM

(Y.Ishigaki+ 2020)

- a massive body (the Sun, a BH) at the origin
- **P**³**T method** (S.Oshino, Y.Funato, J.Makino, 2011)
- FDPS (M.Iwasawa+ 2019)
- w/wo PN term

3. Result

an example of orbital evolution

X-Z

х-у 10 1000 5 500 Z[AU] Y[AU] 0 0 -500 -5 -1000 -10 **500** 1000 1500 2000 0 1500 500 1000 200 0 X[AU] X[AU]

Precession

Precession

Time[yrs]

due to GR

0.05

Precession due to RR, GR, MF

z evolution: examples

X-Z

Comparison between cluster models (wo PN)

$$\sigma_{\rm ez}^2 \equiv (1/n_{\rm run}) \sum^{\rm nrun} \Delta i^2$$

Summary & Discussion (1)

- We performed N-body simulations of dynamical evolution of the star cluster at the GC.
- The orbit of S2 evolves from its initial Kepler orbit.
- Its precession is due to GR, MF and RR.
- Precession due to RR is $0.01 \sim 0.1$ times of that due to GR.

Summary & Discussion (2)

- The evolution of inclination is driven by RR.
- The increasing/decreasing rate of inclination, amplitude of its fluctuation depend on cluster properties: the mass, number of objects.
- ... composition of stellar and compact objects...
- \bullet Further observation of S2 may be a clue to N.
- Observation of inclination evolution of S stars may be a clue to understand the above properties.

N-body simulations of the cases of mass function including IMBH is in progress.