

From Clusters to Common Envelopes

The first catalogue of candidate white dwarf main sequence binaries in open star clusters

Steffani Grondin

University of Toronto MODEST-24 (August 21, 2024)

Close binary systems with a WD are the progenitors of a variety of astrophysical transients:

- Cataclysmic variables
- Low-mass x-ray binaries
- Type la supernovae
- Mergers → gravitational waves

SN la remnant G299.2-2.9 (NASA/CXC/U.Texas/S. Post et al./2MASS/UMass/IPAC-Caltech)

e.g. formation of a close white dwarf + main-sequence binary

$\label{eq:main_sequence} \begin{array}{l} \mbox{Main Sequence + Main Sequence Binary} \\ (M1 > M2) \end{array}$

e.g. formation of a close white dwarf + main-sequence binary

AGB + Main Sequence Binary (M1 >> M2)

e.g. formation of a close white dwarf + main-sequence binary

AGB + Main Sequence Binary (AGB's Roche Lobe filled)

e.g. formation of a close white dwarf + main-sequence binary

AGB + Main Sequence in Common Envelope (RLOF; M1 and M2 orbit inside a CE)

e.g. formation of a close white dwarf + main-sequence binary

AGB + Main Sequence in Common Envelope (Energy from in-spiral \rightarrow envelope; CE ejected)

e.g. formation of a close white dwarf + main-sequence binary

White Dwarf + Main Sequence Post-CE Binary

P ~ hours – days (Parsons et al. 2021)

Large multi-wavelength surveys have yielded the discovery of thousands of white dwarf + main-sequence binaries.

e.g. Rebassa-Mansergas+ (2010, 2016), Inight+ (2023)

e.g. Ren+ (2014), Parsons+ (2016)

Large multi-wavelength surveys have yielded the discovery of thousands of white dwarf + main-sequence binaries.

A binary in a star cluster provides an independent age constraint on the system. (extra information to probe the evolutionary history) A binary in a star cluster provides an independent age constraint on the system. (extra information to probe the evolutionary history)

Despite their utility, there are only two confirmed WD+MS post-CE binaries associated with a cluster.

V471 Tau: e.g. Young & Capps 1971, Muirhead+ 2023 HZ9: e.g. Stauffer 1987, Muirhead+ (incl. Grondin) 2024, submitted

The Goal:

Perform the first systematic search for WD+MS binaries in hundreds of Milky Way open clusters.

STEP 1: Select a sample of well-constrained open clusters to search.

3. **Distance < ~1.5kpc:** within a distance with reliable parallaxes/suitable for follow-up

Full sample: 299 Galactic OCs!

STEP 2: Select Gaia stellar samples based on broad kinematic constraints.

How?

- 1. Search for stars either within a radius:
 - a. of **50pc** from the cluster centre.
 - b. 30% farther than the furthest high-probability cluster member in the Cantat-Gaudin+ 2020 catalogue
- 2. Stellar kinematics must fall within a range of 30% beyond the minimum and maximum *Gaia* OC proper motion and parallax.
- 3. Full kinematics are explored afterwards.

STEP 3: Cross-match the Gaia DR3 data.

WD+MS binaries have unique colour combinations due to the presence of a **cool low-mass MS star** and **hot WD**.

 \rightarrow Hunt for WD+MS binaries using multi-band photometry.

Pan-STARRS1 (g,r,i,z)

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Grondin+ 2024b

STEP 4: Develop a support vector machine (SVM) to identify systems.

STEP 4: Develop a support vector machine (SVM) to identify systems. Our SVM uses 10 input features (colours) from *Gaia*, 2MASS and Pan-STARRS1.

STEP 4: Develop a support vector machine (SVM) to identify systems. Our SVM uses 10 input features (colours) from *Gaia*, 2MASS and Pan-STARRS1.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

STEP 4: Develop a support vector machine (SVM) to identify systems. Our SVM uses 10 input features (colours) from *Gaia*, 2MASS and Pan-STARRS1.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Create cleaned + cross-matched stellar samples and run through SVM for all clusters.

We search 299 open clusters for WD+MS binaries using our SVM.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

We search 299 open clusters for WD+MS binaries using our SVM.

Grondin+ 2024b

Our high-probability candidate catalogue: 52 systems above P>0.9.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

We perform a χ^2 analysis to determine the degree of spatial and kinematic cluster association for each candidate.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Follow-up spectroscopy reveals a range of properties.

Follow-up spectroscopy reveals a range of properties.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Follow-up spectroscopy reveals a range of properties.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Clear and regular (short period) variability is observed in ZTF, K2 and TESS data.

Despite consistent kinematics, >50% of our candidates are spatially offset from their host cluster.

Despite consistent kinematics, >50% of our candidates are spatially offset from their host cluster.

Grondin+ 2024b

e.g. Richer et al. (incl. Grondin) 2020

e.g. Richer et al. (incl. Grondin) 2020

Why? Stellar evolution? Dynamics?

e.g. Richer et al. (incl. Grondin) 2020

Why? Stellar evolution? Dynamics?

Possible through natal kicks!

e.g. Richer et al. (incl. Grondin) 2020

Why? Stellar evolution? Dynamics?

Possible through natal kicks!

Dynamics: interactions with other cluster stars can eject binaries and single stars. e.g. through 3-body encounters Dynamics: interactions with other cluster stars can eject binaries and single stars. e.g. through 3-body encounters

Once a star/binary escapes a cluster, how do you trace it back?

Simulate high-N parameter spaces for extra-tidal stars/binaries ejected from clusters.

Simulate high-N parameter spaces for extra-tidal stars/binaries ejected from clusters.

Corespray Grondin+ 2023 Simulate high-N parameter spaces for extra-tidal stars/binaries ejected from clusters.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Example: chemical tagging and Corespray identified 10 new extra-tidal stars of the GC M3.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Grondin+ 2023

We apply this method to simulate ejected stars/binaries of all Milky Way clusters.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Actions of each GC are ~unique, acting as useful parameters to identify escaped cluster members.

Actions of each GC are ~unique, acting as useful parameters to identify escaped cluster members.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Application: Hundreds of observed extra-tidal stars traced back to ~25 clusters.

Comparing chemistry and kinematics of simulated ejected stars to observed systems in Gaia and APOGEE.

Ryan Wang (UofT undergraduate)

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Grondin, Wang et al. in prep.

From Clusters to Common Envelopes | Steffani Grondin | University of Toronto

Grondin, Wang et al. in prep.

New catalogue of WD+MS binaries in OCs

- A detailed characterization (masses, orbital solutions, etc.) of a subset of our WD+MS candidate binaries in clusters is currently underway.
- Once a larger sample of post-CE WD+MS binaries in clusters is confirmed, we can measure pre-CE masses → one-to-one mapping between initial/final masses of CE systems.

Grondin+ 2024b: arXiv: 2407.04775

Extra-tidal/escaped stars and binaries

- Associating field post-CE binaries with clusters could greatly increase the number of benchmark post-CE systems with ages → novel insights into one of the most uncertain phases of binary evolution.
- Extending Corespray to open clusters.
- For Corespray applications, see talks by Fraser Evans (hypervelocity stars) and Alonso Herrera (single+binary runaways) tomorrow!

Grondin+ 2023: arXiv.org/2207.11263 Grondin+ 2024a: arXiv.org/2310.09331

I am applying for postdoc positions this fall! Please come talk to me about potential avenues for collaboration. :)