

Metallicity spread among the primordial population of Galactic GCs

Marilyn Latour (University of Göttingen) S. Kamann, T.-O. Husser, S. Dreizler & MUSE GC Team

> MODEST-24, Warsaw August 20th, 2024

Metallicity spread in P1 stars

The MUSE Globular Cluster Survey

MUSE

- Integral field spectrograph at the UT4 of the VLT
- Wide Field Mode -> 1'x1' field of view (0.2" sampling)
 Narrow Field Mode -> 7.5"x7.5" field of view (0.025" sampling)
- 4650-9300 Å, R~3000 (Δλ~2.5 Å)

The Survey

- GTO time (2014-2022)
- 26 Galactic GCs
 8 Magellanic Cloud GCs
- 1-10 WFM pointings / GC
 1-3 NFM pointings / GC
- 3+ epochs / pointings
- 10+ epochs in 4 GCs (47Tuc, ωCen, NGC3201, NGC1851)
- Spectra for 10 000+ stars / GC

Kamann et al. 2018

Data Analysis

Spectral extraction (Pampelmuse, Kamann et al. 2013)

Data Analysis

Spectral fitting

- Göttingen Spectral Library of Phoenix model atmospheres (Husser et al. 2013)
- Full spectrum fit with SPEXXY (Husser et al. 2016)
- T_{eff,} metallicity [M/H], V_{rad}, telluric components

Nitschai et al. 2023

SCIENCE CASES

- 1. Radial velocities
- **Kinematics** (talk by R. Pechetti and poster by E. Balakina)

Binaries (talks by S. Saracino, S. Dreizler)

→ CaT - metallicity (Husser et al. 2020)

- 2. Chemistry / Metallicities in ω Cen (Latour et al. 2021, Nitschai et al. 2023)
- Stellar parameters ----> Horizontal Branch Stars (Latour et al. 2023)
 - ----> Multiple populations (Latour et al. 2019, Latour et al. in prep.)

Metallicity spread among the P1 stars

Main Goals

1) For the primordial population stars (P1): quantify the metallicity spread in connection with the pseudo-color F275W - F4814W (x-axis of the chromosome map).

2) Determine intrinsic metallicity dispersions for the P1 and P2 stars.

The chromosome maps

Milone et al. 2017

What causes the color spread among the P1 stars?

The P1 stars should be a very homogeneous population.

Iron (metallicity) variations (Lardo et al. 2022)

Milone et al. 2017

What causes the color spread among the P1 stars?

The P1 stars should be a very homogeneous population.

Iron (metallicity) variations (Lardo et al. 2022)

In the literature so far :

- Spectroscopic iron variations in 3 GCs:

 > NGC 2808, ~0.15 dex, 5 stars (Lardo et al. 2023)
 > NGC 3201, ~0.10 dex, 12 stars (Marino et al. 2019)
 > NGC 104 (47 Tuc), 0.14 dex, 21 stars (Marino et al. 2023)
- Photometric metallicity variations:
 –> Sample of 50 GCs, 0.05-0.30 dex (Legnardi et al. 2022)

Milone et al. 2017

The metallicities of the P1 stars

The metallicities of the P1 stars

Metallicity spread of the P1 stars

- Weighted least-square fit
- ΔC from 5th 95th percentile $\rightarrow \Delta [M/H]$
- Intrinsic metallicity dispersion $\rightarrow \sigma [M/H]$

<u>Results</u>

- Significant metallicity spreads in 18 out of 21 GCs.
- Spread between 0.02 0.2 dex

Metallicity spread versus clusters mass

Some theoretical predictions

 Increase in metallicity dispersion with the Globular cluster's mass due to self-enrichment. (Bailin 2018, 2021, McKenzie & Bekki 2022)

Metallicity spread versus clusters mass

Some theoretical predictions

 Increase in metallicity dispersion with the Globular cluster's mass due to self-enrichment. (Bailin 2018, 2021, McKenzie & Bekki 2022)

Metallicity dispersion P1 vs P2

<u>Results</u>

- The P2 stars have equal or smaller σ than the P1 stars (shown for NGC 6362, NGC 6838, Legnardi et al. 2022)
- $\bullet~\sigma$ correlates well with GC mass

Type II GCs

What about the Type II GCs and their "P3" ?

- Type II GCs have an "extra" population (red-RGB, Milone et al. 2017)
- NGC 1851, NGC 6656 (M22), NGC 5286, NGC 362, NGC 7089 (M2), NGC 6388
- P3 stars (in some GCs) have variations in s-elements (Ba), C+N+O, iron.
- The status of some Type II GCs (NGC 6388) and the presence of iron-spread is still debated (Carretta & Bragaglia 2022, 2023, Vargas et al. 2022)

Type II GCs

- We measured the correlation between the metallicity of the P1 stars and their F275W-F814W pseudo-color in 21 GCs.
- We measured metallicity spreads Δ [M/H] between 0.02 0.20 dex in 18 GCs.
- We find the P2 stars to have a metallicity dispersion smaller or equal to that of the P1 stars.
- We see a correlation between metallicity spread, dispersion and the GC mass, similar to the theoretical expectations.

What next?

• Investigate the metallicity/abundance differences in the Type II GCs.

Cluster	Nstar	[M/H]err	ΔC	$R_{\rm P}$	<i>p</i> -value	а	b	Δ [M/H]
NGC 104	226	0.008	0.29	0.58	7.96e-22	0.21 ± 0.03	-0.787 ± 0.003	0.061 ± 0.008
NGC 1851	127	0.011	0.21	0.40	4.29e-06	0.25 ± 0.10	-1.169 ± 0.011	0.053 ± 0.016
NGC 2808	152	0.018	0.33	0.57	3.35e-14	0.41 ± 0.08	-1.072 ± 0.008	0.137 ± 0.021
NGC 3201	30	0.007	0.25	0.69	2.29e-05	0.38 ± 0.15	-1.449 ± 0.018	0.095 ± 0.029
NGC 362	113	0.017	0.12	0.21	2.54e-02	0.32 ± 0.20	-1.159 ± 0.009	0.039 ± 0.020
NGC 5286	115	0.023	0.29	0.67	3.27e-16	0.51 ± 0.10	-1.585 ± 0.016	0.148 ± 0.023
NGC 5904	113	0.015	0.20	0.63	7.36e-14	0.41 ± 0.09	-1.296 ± 0.006	0.083 ± 0.015
NGC 6093	234	0.025	0.20	0.24	2.02e-04	0.15 ± 0.09	-1.647 ± 0.008	0.030 ± 0.014
NGC 6218	64	0.015	0.13	0.22	7.55e-02	0.17 ± 0.18	-1.319 ± 0.011	0.022 ± 0.018
NGC 6254	83	0.016	0.23	0.68	1.51e-12	0.48 ± 0.13	-1.497 ± 0.009	0.110 ± 0.023
NGC 6362	33	0.025	0.21	0.38	2.76e-02	0.24 ± 0.17	-1.090 ± 0.013	0.050 ± 0.028
NGC 6388	97	0.018	0.80	0.81	1.45e-23	0.30 ± 0.04	-0.471 ± 0.012	0.240 ± 0.025
NGC 6441	148	0.018	0.48	0.35	1.34e-05	0.14 ± 0.07	-0.406 ± 0.010	0.067 ± 0.026
NGC 6541	255	0.017	0.13	0.16	1.12e-02	0.11 ± 0.08	-1.727 ± 0.006	0.014 ± 0.009
NGC 6624	68	0.017	0.36	0.48	3.33e-05	0.15 ± 0.09	-0.761 ± 0.013	0.054 ± 0.025
NGC 6656	72	0.014	0.23	0.55	5.14e-07	0.56 ± 0.17	-1.715 ± 0.035	0.132 ± 0.032
NGC 6681	38	0.024	0.17	0.02	8.99e-01	-0.05 ± 0.22	-1.546 ± 0.014	-0.008 ± 0.028
NGC 6752	92	0.012	0.16	0.72	5.50e-16	0.71 ± 0.11	-1.499 ± 0.006	0.117 ± 0.014
NGC 7078	220	0.033	0.17	0.47	2.86e-13	0.71 ± 0.15	-2.195 ± 0.010	0.122 ± 0.021
NGC 7089	171	0.019	0.24	0.70	1.23e-26	0.66 ± 0.09	-1.484 ± 0.008	0.156 ± 0.018
NGC 7099	67	0.021	0.10	0.05	6.63e-01	0.22 ± 0.45	-2.172 ± 0.020	0.021 ± 0.034

e 1. Parameters of the $\Delta_{F275W,F814W}$ pseudo-color-metallicity relationship and metallicity spread derived among the P1 stars.

Cluster	Nstars	Mean [M/H] P1	σ [M/H]	Nstars	Mean [M/H] P2	σ [M/H]	Mean [M/H] P1+	σ[M/H] P2
NGC 104	226	-0.802 ± 0.002	0.033 ± 0.002	916	-0.802 ± 0.001	0.032 ± 0.001	-0.802 ± 0.001	0.033 ± 0.001
NGC 1851	127	-1.207 ± 0.003	0.036 ± 0.003	239	-1.210 ± 0.002	0.031 ± 0.002	-1.209 ± 0.002	0.033 ± 0.001
NGC 2808	152	-1.108 ± 0.005	0.056 ± 0.004	483	-1.096 ± 0.002	0.052 ± 0.002	-1.105 ± 0.003	0.055 ± 0.003
NGC 3201	30	-1.482 ± 0.008	0.045 ± 0.006	47	-1.474 ± 0.004	0.029 ± 0.003	-1.477 ± 0.004	0.036 ± 0.003
NGC 362	113	-1.178 ± 0.004	0.038 ± 0.003	281	-1.195 ± 0.002	0.037 ± 0.002	-1.191 ± 0.002	0.038 ± 0.002
NGC 5286	115	-1.663 ± 0.006	0.057 ± 0.005	174	-1.654 ± 0.004	0.046 ± 0.003	-1.658 ± 0.003	0.051 ± 0.003
NGC 5904	113	-1.307 ± 0.004	0.037 ± 0.003	355	-1.315 ± 0.001	0.022 ± 0.001	-1.313 ± 0.001	0.027 ± 0.001
NGC 6093	234	-1.661 ± 0.003	0.034 ± 0.003	324	-1.662 ± 0.002	0.027 ± 0.002	-1.662 ± 0.002	0.030 ± 0.002
NGC 6218	64	-1.330 ± 0.003	0.021 ± 0.003	97	-1.345 ± 0.003	0.022 ± 0.002	-1.339 ± 0.002	0.022 ± 0.002
NGC 6254	83	-1.519 ± 0.005	0.047 ± 0.004	171	-1.524 ± 0.002	0.026 ± 0.002	-1.523 ± 0.002	0.034 ± 0.002
NGC 6362	33	-1.101 ± 0.006	0.024 ± 0.007	18	-1.119 ± 0.007	0.012 ± 0.009	-1.108 ± 0.005	0.020 ± 0.006
NGC 6388	97	-0.541 ± 0.008	0.078 ± 0.006	312	-0.498 ± 0.004	0.064 ± 0.003	-0.507 ± 0.004	0.073 ± 0.003
NGC 6441	148	-0.433 ± 0.005	0.055 ± 0.004	374	-0.378 ± 0.004	0.083 ± 0.003	-0.394 ± 0.004	0.080 ± 0.003
NGC 6541	255	-1.736 ± 0.002	0.026 ± 0.002	242	-1.743 ± 0.002	0.027 ± 0.002	-1.740 ± 0.001	0.028 ± 0.001
NGC 6624	68	-0.786 ± 0.005	0.038 ± 0.004	175	-0.804 ± 0.003	0.029 ± 0.002	-0.799 ± 0.002	0.033 ± 0.002
NGC 6656	72	-1.831 ± 0.007	0.059 ± 0.005	107	-1.806 ± 0.006	0.065 ± 0.005	-1.816 ± 0.005	0.064 ± 0.004
NGC 6681	38	-1.547 ± 0.005	0.024 ± 0.005	180	-1.558 ± 0.003	0.032 ± 0.003	-1.556 ± 0.003	0.031 ± 0.002
NGC 6752	92	-1.518 ± 0.004	0.038 ± 0.003	220	-1.514 ± 0.002	0.027 ± 0.002	-1.517 ± 0.002	0.032 ± 0.002
NGC 7078	220	-2.242 ± 0.005	0.067 ± 0.004	329	-2.200 ± 0.003	0.053 ± 0.003	-2.237 ± 0.004	0.064 ± 0.003
NGC 7089	171	-1.515 ± 0.005	0.058 ± 0.004	670	-1.526 ± 0.002	0.038 ± 0.001	-1.524 ± 0.002	0.044 ± 0.001
NGC 7099	67	-2.184 ± 0.007	0.051 ± 0.005	150	-2.167 ± 0.003	0.028 ± 0.003	-2.172 ± 0.003	0.038 ± 0.002

Table 2. Mean metallicity and dispersion measured in the P1 and P2 stars with their 1σ uncertainties.

Type II GCs

