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Star clusters form and evolve in a galactic

tidal field

* Mass segregation, core-collapse,
dynamical mass-loss, evaporation

* influenced by IMF, rotation, encounters
with GMCs, other clusters, dark matter?

NASA, ESA, the Hubble Heritage Team, and A. Aloisi
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G RI F FI N Galaxy Realizations Including Feedback From INdividual massive star

Low-metallicity (0.1 —0.01 Z)), gas-rich dwarf galaxy models with 2stars, g 01 2 3 B ﬁi 2 O
107 — 108 particles, 4 M, gas mass resolution l0g10(2[M o /pc?]) 10910(Zgas [M o /pE2])

GADGET-3 based tree/SPH code SPHGal (Hu+ 14,16,17):

e Multiphase ISM: non-equilibrium cooling with a chemical network
down to 10 K (H, H*, H,, C*, CO, O) + metallicity-dependent cooling at
high temperatures

1 kpc . " t = 169 Myr 1 kpc
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Low-metallicity (0.1 —0.01 Z)), gas-rich dwarf galaxy models with 2stars; 3 o1 2 3 2885 ;4 o'}i q, 2 e 4‘
107 — 108 particles, 4 M gas mass resolution l0g10(2:[M o /pc?]) 10910(Zgas [M o /pc?])

¥
GADGET-3 based tree/SPH code SPHGal (Hu+ 14,16,17): e

e Multiphase ISM: non-equilibrium cooling with a chemical network
down to 10 K (H, H*, H,, C*, CO, O) + metallicity-dependent cooling at
high temperatures

« Star formation: Jeans threshold, IMF sampled stars-by-star 1 kpe " Pty 1 keg
between 0.08-500 M, (Lahén+ 23) PgAS 1. 2% @ 5 6 7
10G/0(TRIKI) ~ logio(P/ks [K/cm?3])
* Feedback from individual stars (Geneva + BoOST models): A : :
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» Enrichment element-by-element & channel-by-channel:
stellar winds, core-collapse SNe, pair-instability SNe, AGB winds

1 kpc
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Simulated star cluster populations in starburst dwarf galaxies
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Simulated star cluster populations in starburst dwarf galaxies

Power-law slope in high-mass end of the cluster mass function regulated by pre-supernova
stellar feedback (Ma+ 18, Lahén+ 20a/24, Garcia+ 23, Andersson+ 24)

GC-mass clusters form hierarchically, with high central densities, rotating, with rapid self-
enrichment due to winds of massive stars
—> toward multiple populations in almost uniform age clusters formed in dwarf starbursts

(Lahén+ 24)
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Accurate collisional dynamics in star clusters with KETJU

How to get rid of gravitational softening:

Publicly available KETJU-module
(Rantala+ 17, Mannerkoski+ 23) in a nutshell:

* Select region(s) of space where you need higher accuracy
in gravitational interactions:

* center atevery m, > m;; herem; =3 Mg

* radius: n X grav. softening length; here 0.03—-0.3 pc
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100_pc V| mock HST image
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See work by Antti Rantala, Matias Mannerkoski and Christian Partmann
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Publicly available KETJU-module ' racton
(Rantala+ 17, Mannerkoski+ 23) in a nutshell:

How to get rid of gravitational softening:

* Select region(s) of space where you need higher accuracy
in gravitational interactions:

v
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* center atevery m, > m;; herem; =3 Mg

* radius: n X grav. softening length; here 0.03—-0.3 pc

e KETJU uses three numerical recipes in the

algorithmically regularized MSTAR library a: E

(Rantala+ 20) to guarantee user-specified accuracy without gravitational softening:

» Time-transformed equations of motion (incl. optional post-Newtonian corrections)
» Minimum spanning tree coordinate system

» Gragg-Bulirsch-Stoer extrapolation technique combined with leap-frog integrator

See work by Antti Rantala, Matias Mannerkoski and Christian Partmann
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KETJU+SPHGal: (low-mass) star cluster
population in a low-metallicity dwarf galaxy
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Early stellar feedback (photionization, stellar winds, can be
externall!) clears the clusters of gas
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~65% of clusters disrupt by 100 Myr = SNae in clusters reduced
by a factor of 2.6

» Still, cluster evolution has only a minor impact on galactic
scales in anisolated, quiescent dwarf galaxy
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KETJU+SPHGal: (lOW'maSS) star cluster Cluster formation efficiency 1-10 Myr
population in a low-metallicity dwarf galaxy T ew

SPHGAL

Early stellar feedback (photionization, stellar winds, can be
externall) clears the clusters of gas

10 l Al " v, =
~65% of clusters disrupt by 100 Myr = SNae in clusters reduced . ' ‘ " ' ' '
by a factor of 2.6

> Still, cluster evolution has only a minor impact on galactic 100 200 300 400 200
scales in an isolated, quiescent dwarf galaxy

Cluster formation efficiency 10-100 Myr

—— KETJU
SPHGAL

Rapid cluster evolution seen as reduction of measured ,cluster
formation efficiency” (cluster formation rate/SFR)

e After 10—100 Myr of evolution, ~¥10% of all stars reside in
bound >100 M, star clusters

Lahén+ in prep.



KETJU+SPHGal: star cluster mass-loss and size-growth in a galactic environment

Examples: 500 — 1000 M, clusters — KETJU
in a dwarf galaxy — SPHGAL
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but not necessarily destructive
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Cluster mass-loss with KETJU:
*  Early evolution both through dynamical
mass-loss and stellar evolution

*  Evaporation of low-mass stars (median m,
increases)

* Total life-times ~0.5-2.2 Gyr, fit with mass-
loss rate of M o« M= using y~0.7
(Lamers+ 05)

200 300
Lahén+ in prep. t — tmaxm) [Myr]




KETJU+SPHGal: star cluster mass-loss and size-growth in a galactic environment

Examples: 500 — 1000 M, clusters 1 — KETJU
in a dwarf galaxy =~ 700 SPRHOAL

—_ Up to factor of 10 size increase
. . | = N with KETJU
Size-evolution and mass-loss rapid = 500-‘
3 . Q
but not necessarily destructive G 400 .
v W 10° 1 fv AP fSEp o
Cluster mass-loss with KETJU: | COTISp A

*  Early evolution both through dynamical g
mass-loss and stellar evolution —

*  Evaporation of low-mass stars (median m, 2
increases)

* Total life-times ~0.5-2.2 Gyr, fit with mass- 1024}

loss rate of M o« M= using y~0.7
(Lamers+ 05)
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t— tmax(M) [Myr]
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Lahén+ in prep. t — tmaxm) [Myr]



KETJU+SPHGal: Mass-size evolution

Around m>3 M 4 not softened
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KETJU+SPHGal: Mass-size evolution
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KETJU+SPHGal: Mass-size evolution

Around m>3 M 4 not softened Softened gravity (0.1 pc)

Gatto+21, 10-100 Myr
Hunter+03 <100 Myr
fgas > 0.1

fgas < 0.1
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Conclusions & outlook

Formation of star clusters up to > 10° Mg can be modelled in a galactic environment while
sampling the entire IMF (0.08 - 500 M) o
* Simulated star clusters are not anymore point masses or simple stellar populations ’

* Pre-SN feedback is efficient: often disperses dense gas before SNe start
(see also observations in Sarbadhicary,...,NL+ 24 subm.)

The power of high-resolution galaxy simulations lies in the simultaneous modelling of
resolved populations of star clusters




Conclusions & outlook

Formation of star clusters up to > 10° Mg can be modelled in a galactic environment while
sampling the entire IMF (0.08 - 500 M)
* Simulated star clusters are not anymore point masses or simple stellar populations

* Pre-SN feedback is efficient: often disperses dense gas before SNe start
(see also observations in Sarbadhicary,...,NL+ 24 subm.)

The power of high-resolution galaxy simulations lies in the simultaneous modelling of
resolved populations of star clusters

Avenues toward chemically and dynamically realistic simulated globular clusters:
* Various enrichment sources (to be done: binaries, more massive / supermassive stars)

* Collisional dynamics+hydro+feedback: stellar interactions (binaries, mergers, IMBH seeds?),
long-term evolution, cluster disruption in a galactic and/or cosmological context




Thank you!



Star clusters with KETJU+SPHGal: code comparison

Star cluster, 10k stars, dense Plummer profile with initial req,=0.3 pc
Half-mass radii

- BIFROST direct N-body

= KETJU around m;>3 Mg

— KETJU around m;>8Mqg
SPHGAL softening=0.01 pc
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Star clusters with KETJU+SPHGal: code comparison

Star cluster, 10k stars, dense Plummer profile with initial req,=0.3 pc
Lagrangian radii Half-mass radii

— BIFROST direct N-body
| == KETJU around m;>3 Mg
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Photoionization (Pl) evacuates gas before SNe

Gatto+21, 10-100 Myr
Hunter+03 <100 Myr
fgas > 0.1
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Galaxy scale simulations of star cluster formation

Non-exhaustive list of simulations of cluster/clump formation including non-equilibrium chemistry and varying detail of stellar
feedback including early stellar feedback (pre-SN):

e Cosmological conditions: Boley+ 09; Ricotti+ 16; Kimm+ 16; Ma+ 18; Phipps+ 20; Calura+ 22; Garcia+ 23; Sameie+ 23

» |dealized spiral arm / dwarf galaxy / dwarf galaxy starburst simulations: Dobbs+ 17/20; Lahén+ 20a/24; Li+ 22; Hislop+ 22;

Andersson+ 24

Garcia+ 23

92
pap (mag arcsec =)

B, | |

20.0 22.5 25.0 27.5 30.0

Lahén+ 22

Resolution to model feedback of
individual (massive) stars increasingly
common

More simulations of cluster formation in galaxies:

Bekki+ 01; Kravtsov & Gnedin 02;
Bournaud+ 08; Kruijssen+ 11; Renaud+ 15;
Li+ 17; Maji+ 17; Pfeffer+ 18; Hirai+ 21;
Rieder+ 22; Reina-Campos+ 22; Lake+ 23;
van Donkelaar+ 23; Gutcke 24
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