Very massive stars do not expand The (un)eventful life at the massive end of the IMF

Nicolaus Copernicus Astronomical Center & University of California San Diego

Massive stars - Evolutionary pathways

How do we form a Wolf-Rayet?

How do we form a Wolf-Rayet?

How do we form a Wolf-Rayet?

ENVELOPE GETS EJECTED

- Stellar winds
- LBV ejections
- Mass transfer events

Convection

CORE GROWS

- Overshooting
- Rotation

*Core/envelope size not in scale

How do massive stars expand?

Stellar wind models

ORIGINALLY

	Τ _{eff} < 10 ⁴ Κ	T _{eff} ≥ 104 K
	Dust-driven winds	
$X_{\rm surf} \ge 0.4$		Optically thin line-driven winds
<i>X</i> _{surf} < 0.4		Optically thick/Wolf-Rayet winds

BUT

We observe H-rich Wolf-Rayet stars!! (e.g. Bestenlhener+2020)

Wolf-Rayet stars have high L/M ratios and their winds are very strong

L/M ratio the actual reason why Wolf-Rayet winds are strong!

Stellar wind models

ORIGINALLY

	Τ _{eff} < 10 ⁴ K	T _{eff} ≥ 10 ⁴ K
	Dust-driven winds	
$X_{\rm surf} \ge 0.4$		Optically thin line-driven winds
<i>X</i> _{surf} < 0.4		Optically thick/Wolf-Rayet winds

Stellar wind models

Near-Eddington winds also during main sequence for high M_{ZAMS} !

How much mass is loss via winds?

How much mass is loss via winds?

 $5\% Z_{\odot}$

- At high *M*_{ZAMS} most of the mass is ejected via strong Wolf-Rayet winds
- Not only envelopes, but also cores
- A lot of mass with low-H content ejected very soon (metallicity changes in clusters?)

New BH masses from stellar evolution seem pretty low

New BH masses from stellar evolution seem pretty low

"But Amedeo, what about different overshooting or initial rotations?"

How does this affect stellar expansion?

Conclusions

- Super-eddington winds dominate the evolution of very massive stars (M_{ZAMS} >150 M_{\odot})
 - No expansion
 - Small BH masses
- A lot of low-H/He pollution from very massive stars
- Intermediate-mass black holes are hard to form from very massive stars
- Post-GW merger BHs have higher GW kick velocities and are ejected

Black hole masses: to peak or not to peak?

Black hole masses: to peak or not to peak?

Wolf-Rayet winds have a stronger effect

Do models prescribe stellar structure evolution right?

CE donors for close binary BHs

Romagnolo et al. (in prep.)

CE donors for close binary BHs

(Default) CE survival from evolutionary type

CE survival from envelope type

Romagnolo et al. (in prep.)