

Binaries in 47 Tuc: Confronting cluster simulations with observations

A&A submitted

Johanna Müller-Horn, Stefan Dreizler, Fabian Göttgens, Sebastian Kamann, Sven Martens, Sara Saracino, Claire Ye

MODEST24, Warsaw, August 21st 2024

47 Tuc, Credits: NASA, ESA

MUSE view of 47 Tuc

47 Tuc

MUSE

....

old, massive and nearby globular cluster

- observing campaign of globular clusters
 - 8 years of observations
 - reliable spectra of >20,000 stars $^{(1)}$
 - on average 11 epochs per star

image taken from VMC survey

(1) Kamann et al. (2013)

Search for SB1 binaries

Search for SB1 binaries

data
$$t, v_{rad}, \sigma_{v_{rad}}$$

(model) $v_{rad} = v_z + K(\cos(\omega + f) + e\cos(\omega))$

A. identify binaries in a statistical approach (Giesers et al. 2019)

25 v_{rad} [km/s] 0 -25

larger RV scatter \Leftrightarrow higher binary probability

Search for SB1 binaries

/_{rad} [km/s]

v_{rad} [km/s]

data
$$t, v_{rad}, \sigma_{v_{rad}}$$

(model) $v_{rad} = v_z + K(\cos(\omega + f) + e\cos(\omega))$

identify binaries in a statistical Α. approach (Giesers et al. 2019)

B. determine orbital parameters using nested sampling (Buchner 2021)

larger RV scatter \Leftrightarrow higher binary probability

nested sampling works well for multi-modal solutions

Research aims

study binary fraction and demographics

probe the dormant **BH** population

study binarity among blue straggler stars

study binary fraction and demographics

probe the dormant **BH** population

Research aims

study binarity among blue straggler stars

Research aims

study binary fraction and demographics

probe the dormant **BH** population

study binarity among blue straggler stars

Previous observations

eclipsing binaries

Albrow & Gilliland (2001), Weldrake & Sackett (2004), Kaluzny et al. (2013), Nardiello et al. (2019)

Milone et al. (2012), Ji & Bregmann (2015)

binary main sequence

Milone et al. (2012)

radio & X-ray sources

Heinke et al. (2005) Bahramian et al. (2017), Miller-Jones et al. (2015) Rivera Sandoval et al. (2018)

Previous observations

eclipsing binaries

Albrow & Gilliland (2001), Weldrake & Sackett (2004), Kaluzny et al. (2013), Nardiello et al. (2019)

Milone et al. (2012), Ji & Bregmann (2015)

binary main sequence

Milone et al. (2012)

radio & X-ray sources

Heinke et al. (2005) Bahramian et al. (2017), Miller-Jones et al. (2015) Rivera Sandoval et al. (2018)

- limited information on companion masses and period distribution
- low overall binary fraction

Previous observations

eclipsing binaries

Albrow & Gilliland (2001), Weldrake & Sackett (2004), Kaluzny et al. (2013), Nardiello et al. (2019)

Milone et al. (2012), Ji & Bregmann (2015)

binary main sequence

Milone et al. (2012)

radio & X-ray sources

Heinke et al. (2005) Bahramian et al. (2017), Miller-Jones et al. (2015) Rivera Sandoval et al. (2018)

> need spectroscopy!

- limited information on companion masses and period distribution
- low overall binary fraction

low total binary fraction, consistent with photometric estimates

low total binary fraction, consistent with photometric estimates

Cluster Monte Carlo simulations

CMC simulations of 47 Tuc (Ye et al. 2022)

ASTROPHYSIK & GEOPHYSIK

- make predictions for binary properties
- account for observational biases using mock data

Cluster Monte Carlo simulations

CMC simulations of 47 Tuc (Ye et al. 2022)

> ASTROPHYSIK & GEOPHYSIK

make predictions for binary properties

account for observational biases using mock data

Binary demographics Orbital parameters

Binary demographics Orbital parameters

- A. uncertainty in binary evolution models
- B. (excessive) dynamic hardening in CMC
- C. CMC initial conditions

Black holes in 47 Tuc

Dark remnant companions

Dark remnant companions

Black holes in 47 Tuc Dark remnant companions

'no evidence for BH/NS companions;' all min. $m_2 \ll 1.4 \mathrm{M}_{\odot}$

> ~4 MS-BH/NS binaries expected from CMC simulation

min. *m*₂ [M_o]

Black holes in 47 Tuc Dark remnant companions

possible interpretation

- unfortunate time sampling
- restricted FoV
- low number of binary BHs / unobservable configurations

Black holes in 47 Tuc Dark remnant companions

possible interpretation

- unfortunate time sampling
- restricted FoV
- low number of binary BHs / unobservable configurations

Peculiar objects

Binary fraction vs. stellar type

Dark remnant companions?

Dark remnant companions?

WDs

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA

Spectroscopic binaries

High resolution spectra

Spectroscopic binaries RV dilution effect (Giesers et al. 2019)

time

Summary

study binary population of 47 Tuc using multiepoch spectroscopy from MUSE

- \rightarrow determine total binary fraction of (2.4 \pm 0.9)% and increased binary fraction among BSS
- comparison with CMC simulations reveals dearth of short-period binaries and lack of binaries with massive/dark companions

69

Binary demographics CMC simulations

Binary demographics Orbital parameters

