Eccentric Mergers in Disks of Active Galactic Nuclei

Gaia Fabj Niels Bohr International Academy

MODEST 24

23.08.2024

Masses in the Stellar Graveyard

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars

Proposed GW Formation Channels

Proposed GW Formation Channels

Three-body Scatterings & Eccentric Mergers

- BH Binary + single interactions → eccentric mergers
- Entering LIGO/Virgo/Kagra (LVK) band at high eccentricity (e >0.1)
- GW capture of original or newly-formed binary (three-body merger)

Proposed GW Formation Channels

Proposed GW Formation Channels

= WIKIPEDIA The Free Encyclopedia

Q Search Wikipedia

Search

GW190521

Contents hide

(Top)

Physical significance

Possible electromagnetic counterpart

Possible eccentricity

See also

Notes

References

External links

Article Talk From Wikipedia, the free encyclopedia

GW190521 (initially **S190521g**)^[5] was a gravitational wave signal resulting from the merger of two black holes. It was possibly associated with a coincident flash of light; if this association is correct, the merger would have occurred near a third supermassive black hole.^{[2][6]} The event was observed by the LIGO and Virgo detectors on 21 May 2019 at 03:02:29 UTC,^[7] and published on 2 September 2020.^{[4][5][8]} The event had a Luminosity distance of 17 billion light years away from Earth,^{[note 1][5][9]} within a 765 deg² area^{[note 2][10]} towards Coma Berenices, Canes Venatici, or Phoenix.^{[11][2][6][11]}

At 85 and 66 solar masses (M_{\odot}) respectively, the two black holes comprising this merger are the largest progenitor masses observed to date.^[12] The resulting black hole had a mass equivalent to 142 times that of the Sun, making this the first clear detection of an intermediate-mass black hole. The remaining 9 solar masses were radiated away as energy in the form of gravitational waves.^{[4][5][8]}

Physical significance [edit]

GW190521 is a significant discovery due to the masses of the resulting large black hole and of one or

GW190521

WIKIPEDIA The Free Encyclopedia

Q Search Wikipedia

Search

GW190521

Contents hide

(Top)

Physical significance

Possible electromagnetic counterpart

Possible eccentricity

See also

Notes

References

External links

Article Talk

From Wikipedia, the free encyclopedia

GW190521 (initially **S190521g**)^[5] was a gravitational wave signal resulting from the merger of two black holes. It was possibly associated with a coincident flash of light; if this association is correct, the merger would have occurred near a third supermassive black hole.^{[2][6]} The event was observed by the LIGO and Virgo detectors on 21 May 2019 at 03:02:29 UTC,^[7] and published on 2 September 2020.^{[4][5][8]} The event had a Luminosity distance of 17 billion light years away from Earth,^{[note 1][5][9]} within a 765 deg² area^{[note 2][10]} towards Coma Berenices, Canes Venatici, or Phoenix.^{[11][2][6][11]}

At 85 and 66 solar masses (M_{\odot}) respectively, the two black holes comprising this merger are the largest progenitor masses observed to date.^[12] The resulting black hole had a mass equivalent to 142 times that of the Sun, making this the first clear detection of an intermediate-mass black hole. The remaining 9 solar masses were radiated away as energy in the form of gravitational waves.^{[4][5][8]}

Physical significance [edit]

GW190521 is a significant discovery due to the masses of the resulting large black hole and of one or

High masses (in mass gap)

The LIGO & Virgo Collab+20

GW190521

WIKIPEDIA The Free Encyclopedia

Q Search Wikipedia

Search

GW190521

Contents hide

(Top)

Physical significance

Possible electromagnetic counterpart

Possible eccentricity

See also

Notes

References

External links

Article Talk From Wikipedia, the free encyclopedia

GW190521 (initially **S190521g**)^[5] was a gravitational wave signal resulting from the merger of two black holes. It was possibly associated with a coincident flash of light; if this association is correct, the merger would have occurred near a third supermassive black hole.^{[2][6]} The event was observed by the LIGO and Virgo detectors on 21 May 2019 at 03:02:29 UTC,^[7] and published on 2 September 2020.^{[4][5][9]} The event had a Luminosity distance of 17 billion light years away from Earth,^{[note 1][5][9]}

within a 765 deg² area^[note 2][10] towards Coma Berenices, Canes Venatici, or Phoenix.^[1][2][6][11]

At 85 and 66 solar masses (M_{\odot}) respectively, the two black holes comprising this merger are the largest progenitor masses observed to date.^[12] The resulting black hole had a mass equivalent to 142 times that of the Sun, making this the first clear detection of an intermediate-mass black hole. The remaining 9 solar masses were radiated away as energy in the form of gravitational waves.^{[4][5][8]}

Physical significance [edit]

GW190521 is a significant discovery due to the masses of the resulting large black hole and of one or

High masses (in mass gap)

The LIGO & Virgo Collab+20

Possible eccentricity

Romero-Shaw+20, Gayathri+22

GW190521

WIKIPEDIA The Free Encyclopedia

Q Search Wikipedia

Search

GW190521

Contents hide

(Top)

Physical significance

Possible electromagnetic counterpart

Possible eccentricity

See also

Notes

References

External links

Article Talk

From Wikipedia, the free encyclopedia

GW190521 (initially **S190521g**)^[5] was a gravitational wave signal resulting from the merger of two black holes. It was possibly associated with a coincident flash of light; if this association is correct, the merger would have occurred near a third supermassive black hole.^{[2][6]} The event was observed by the LIGO and Virgo detectors on 21 May 2019 at 03:02:29 UTC,^[7] and published on 2 September 2020.^{[4][5][8]} The event had a Luminosity distance of 17 billion light years away from Earth,^{[note 1][5][9]} within a 765 deg² area^{[note 2][10]} towards Coma Berenices, Canes Venatici, or Phoenix.^{[1][2][6][11]}

At 85 and 66 solar masses (M_{\odot}) respectively, the two black holes comprising this merger are the largest progenitor masses observed to date.^[12] The resulting black hole had a mass equivalent to 142 times that of the Sun, making this the first clear detection of an intermediate-mass black hole. The remaining 9 solar masses were radiated away as energy in the form of gravitational waves.^{[4][5][8]}

Physical significance [edit]

GW190521 is a significant discovery due to the masses of the resulting large black hole and of one or

High masses (in mass gap)

The LIGO & Virgo Collab+20

Possible eccentricity

Romero-Shaw+20, Gayathri+22

Possible EM counterpart *Graham+20*

AGN channel can explain it!

Samsing J., et al., 2022, Nature, 603, 237

(2021)

What kind of stars can we find in an AGN disk?

Fabj G. , Dittmann A.J., Cantiello M., Perna R., Samsing J. (in prep.)

Stellar evolution inside the disk

Cantiello+21, Jermin+21, Jermin+22, Dittmann+21,23, **Fabj** +(in prep.)

Disk capture of initially inclined COs

e.g. Panamarev+18, **Fabi**+20, Macleod & Lin20, Nasim, **Fabj**+23, Wang+24

What's missing in the body merg. simulations? \rightarrow take step forward from purely geometric setup \rightarrow actual inclusion of environmental effects (tides from Supermassive Black hole (SMBH), drag force from gas) \rightarrow Effect of the Hill sphere from SMBH compared to semi-major axis

rger

Effect of Tides on Three-Body Encounters

Effect of Tides on Three-Body Encounters

Scatterings Configuration

- Acceleration term due to SMBH $(10^8 M_{\odot})$
- Place single sBH at Hill radius (10 AU)
- Vary binary semi-major axis (SMA)
- Two setups for single sBH impact parameter
- Co- and counter-rotating binary w.r.t. SMBH

Fabj & Samsing (submitted) ArXiv: 2402.16948

$$R_{H}=R_{CM}{\left(rac{m_{bh}}{M_{BH}}
ight)}^{1/3}$$

Effect of Tides on Merger Probability

- Prob. follows power law at low SMA
- Significant effect as SMA approaches size of the Hill radius
- Two main effects: correction due to tidal field and

fluctuations

Effect of Tides on Merger Probability

- Prob. follows power law at low SMA
- Significant effect as SMA approaches size of the Hill radius
- Two main effects: correction due to tidal field and

fluctuations

Probability for Out-of-plane Interactions

• Possible GW formation channels \rightarrow focus on the AGN channel (why? GW190521)

- Possible GW formation channels \rightarrow focus on the AGN channel (why? GW190521)
- Eccentric mergers → probability to occur in AGN disk-like environments

- Possible GW formation channels \rightarrow focus on the AGN channel (why? GW190521)
- Eccentric mergers → probability to occur in AGN disk-like environments
- Effect of SMBH tidal field
 - Correction factor, fluctuating trend of probability, effect of inclination
 - See also Leigh et al. 2018; Trani et al. 2019; Ginat & Perets 2021; Rom et al.
 2023; Trani et al. 2024

- Possible GW formation channels \rightarrow focus on the AGN channel (why? GW190521)
- Eccentric mergers → probability to occur in AGN disk-like environments
- Effect of SMBH tidal field
 - Correction factor, fluctuating trend of probability, effect of inclination
 - See also Leigh et al. 2018; Trani et al. 2019; Ginat & Perets 2021; Rom et al.
 2023; Trani et al. 2024
- Next step \rightarrow inclusion of the **effects of gas drag** from the accretion disk

Additional Information

Phase-Space Distribution

Phase-Space Distribution

Effect of Tides on Merger Probability

- Evaluate analytically the influence of tidal field on number of interactions
- Energy distribution in presence of tides
- Statistical analysis of binary energy probability distribution
- Correction factor of $1 \frac{2a_0}{R_H}$ for the probability

Peak Frequency Distribution

