Inert compact binary formation in open clusters Ataru Tanikawa (Fukui Prefectural University) Collaborators: Long Wang (Sun Yat-sen University), Michiko S. Fujii (The University of Tokyo) MODEST-24: Exploring Dense Stellar Systems Across Cosmic Time 22 August Warsaw • Tanikawa et al. (2024, MNRAS, 527, 4031, arXiv:2303.05743)

• Tanikawa et al. (2024, OJAp, 7, 39, arXiv:2404.01731)

- Gaia mission and its follow-up observations have discovered many inert compact binaries, so-called Gaia BHs and Gaia NSs.
- These Gaia BHs and Gaia NSs cannot be formed in the conventional binary evolution model (but see Kotko et al. 2024; Iorio et al. 2024; El-Badry et al. 2024; Poojan's talk).
- Gaia BHs can be formed efficiently in open clusters (Tanikawa et al. 2024, MNRAS, 527, 4031; see also Rastello et al. 2023; Di Carlo et al. 2024; Marin Pina et al. 2024).
- But, Gaia NSs cannot (Tanikawa et al. 2024, OJAp, 7, 39).
- Gaia NS formation remains an open question.

- Gaia mission and its follow-up observations have discovered many inert compact binaries, so-called Gaia BHs and Gaia NSs.
- These Gaia BHs and Gaia NSs cannot be formed in the conventional binary evolution model (but see Kotko et al. 2024; Iorio et al. 2024; El-Badry et al. 2024; Poojan's talk).
- Gaia BHs can be formed efficiently in open clusters (Tanikawa et al. 2024, MNRAS, 527, 4031; see also Rastello et al. 2023; Di Carlo et al. 2024; Marin Pina et al. 2024).
- But, Gaia NSs cannot (Tanikawa et al. 2024, OJAp, 7, 39).
- Gaia NS formation remains an open question.

- Gaia mission and its follow-up observations have discovered many inert compact binaries, so-called Gaia BHs and Gaia NSs.
- These Gaia BHs and Gaia NSs cannot be formed in the conventional binary evolution model (but see Kotko et al. 2024; Iorio et al. 2024; El-Badry et al. 2024; Poojan's talk).
- Gaia BHs can be formed efficiently in open clusters (Tanikawa et al. 2024, MNRAS, 527, 4031; see also Rastello et al. 2023; Di Carlo et al. 2024; Marin Pina et al. 2024).
- But, Gaia NSs cannot (Tanikawa et al. 2024, OJAp, 7, 39).
- Gaia NS formation remains an open question.

- Gaia mission and its follow-up observations have discovered many inert compact binaries, so-called Gaia BHs and Gaia NSs.
- These Gaia BHs and Gaia NSs cannot be formed in the conventional binary evolution model (but see Kotko et al. 2024; Iorio et al. 2024; El-Badry et al. 2024; Poojan's talk).
- Gaia BHs can be formed efficiently in open clusters (Tanikawa et al. 2024, MNRAS, 527, 4031; see also Rastello et al. 2023; Di Carlo et al. 2024; Marin Pina et al. 2024).
- But, Gaia NSs cannot (Tanikawa et al. 2024, OJAp, 7, 39).
- Gaia NS formation remains an open question.

- Gaia mission and its follow-up observations have discovered many inert compact binaries, so-called Gaia BHs and Gaia NSs.
- These Gaia BHs and Gaia NSs cannot be formed in the conventional binary evolution model (but see Kotko et al. 2024; Iorio et al. 2024; El-Badry et al. 2024; Poojan's talk).
- Gaia BHs can be formed efficiently in open clusters (Tanikawa et al. 2024, MNRAS, 527, 4031; see also Rastello et al. 2023; Di Carlo et al. 2024; Marin Pina et al. 2024).
- But, Gaia NSs cannot (Tanikawa et al. 2024, OJAp, 7, 39).
- Gaia NS formation remains an open question.

Gaia

Visible star

Gaia

Visible star

• BH/NS

**==*

Gaia

Visible star

) BH/NS

Gaia BH3 (Gaia collaboration 2024); Gaia NS1 (El-Badry et al. (2024a) ...

Gaia

Visible star

• BH/NS

**==*

Gaia BH3 (Gaia collaboration 2024); Gaia NS1 (El-Badry et al. (2024a) ...

Gaia

Visible star

• BH/NS

Gaia BH3 (Gaia collaboration 2024); Gaia NS1 (El-Badry et al. (2024a) ...

Inert/dormant/non-interaction compact binary

Inert/dormant/non-interaction compact binary

Inert/dormant/non-interaction compact binary

I use the term "inert" in this talk.

"Inert"

 $10^2 \lesssim P/\text{day} \lesssim 10^4$

High α_{ce} is needed for isolated binary channel

El-Badry et al. (2023a)

 $M_{1, ZAMS} [M_{\odot}] = 70.6^{+1.3}_{-1.7}$

High α_{ce} is needed for isolated binary channel

El-Badry et al. (2023a)

 $M_{1, ZAMS}[M_{\odot}] = 70.6^{+1.3}_{-1.7}$

High α_{ce} is needed for isolated binary channel

El-Badry et al. (2023a)

 $M_{1, ZAMS}[M_{\odot}] = 70.6^{+1.3}_{-1.7}$

 $|\text{If } \alpha_{\text{ce}} \sim 1, \ldots|$

El-Badry et al. (2023a)

El-Badry et al. (2023a)

• Dynamical capture in open clusters

• Dynamical capture in open clusters

Typical formation mode of Gaia BH/NS

• Dynamical capture in open clusters

Typical formation mode of Gaia BH/NS

clusters

- Cluster parameters
 - Cluster mass: $200 2000 M_{\odot}$
 - Metallicity: Z = 0.0002 0.02
 - Mass density: $2 200 M_{\odot}/\text{pc}^3$
 - Binary fraction: 0, 20, 50 %

- Cluster parameters •
 - Cluster mass: $200 2000 M_{\odot}$
 - Metallicity: Z = 0.0002 0.02
- Mass density: 2 200 M_o/pc³
 Binary fraction: 0, 20, 50 %

 $1.4 \times 10^{8} M_{\odot}$ in total

- Cluster parameters •
 - Cluster mass: $200 2000 M_{\odot}$
 - Metallicity: Z = 0.0002 0.02
 - Mass density: $2 200 M_{\odot}/\text{pc}^3$
 - Binary fraction: 0, 20, 50 %

 $1.4 \times 10^8 M_{\odot}$ in total

in total

- Cluster parameters •
 - Cluster mass: $200 2000 M_{\odot}$
 - Metallicity: Z = 0.0002 0.02
 - Mass density: $2 200 M_{\odot}/\text{pc}^3$
 - Binary fraction: 0, 20, 50 %
- Primordial binary parameters
 - Primary star: Kroupa's IMF
 - $f(m_2/m_1) \propto (m_2/m_1)^{-0.1} (0.1 \le m_2/m_1 \le 1)$

- Cluster parameters •
 - Cluster mass: $200 2000 M_{\odot}$
 - Metallicity: Z = 0.0002 0.02
 - Mass density: $2 200 M_{\odot}/\text{pc}^3$
 - Binary fraction: 0, 20, 50 %
- Primordial binary parameters
 - Primary star: Kroupa's IMF
 - $f(m_2/m_1) \propto (m_2/m_1)^{-0.1} (0.1) \le m_2/m_1 \le 1)$ $1M_{\odot}$ NS $1M_{\odot}$ $10M_{\odot}$

in total

- Cluster parameters •
 - Cluster mass: $200 2000 M_{\odot}$
 - Metallicity: Z = 0.0002 0.02
 - Mass density: $2 200 M_{\odot}/\text{pc}^3$
 - Binary fraction: 0, 20, 50 %
- Primordial binary parameters
 - Primary star: Kroupa's IMF
 - $f(m_2/m_1) \propto (m_2/m_1)^{-0.1} (0.1) \le m_2/m_1 \le 1)$ $10 M_{\odot}$ $1M_{\odot}$ NS

in total

Gaia BHs could not be formed without dynamical interactions.

Wang et al. (2020)

Wang et al. (2020)

Criteria of Gaia BH/NS

Criteria of Gaia BH/NS

Criteria of Gaia BH/NS

MS, PMS, He star

Criteria of Gaia BH/NS

Formation efficiency of Gaia BH

density, binary fraction, and metallicity

~ $10^{-6} M_{\odot}^{-1}$ for clusters with reasonable mass,

~ $10^{-6}M_{\odot}^{-1}$ for clusters with reasonable mass, density, binary fraction, and metallicity

 $N_{\text{GaiaBH,MW}} \sim 6 \times 10^3 \left(\frac{\eta}{10^{-6}M} \right)$

$$\frac{1}{M_{\odot}^{-1}} \left(\frac{M_{\rm MW}}{6.1 \times 10^{10} M_{\odot}} \right) \left(\frac{f_{\rm cluster}}{0.1} \right)$$

~ $10^{-6}M_{\odot}^{-1}$ for clusters with reasonable mass, density, binary fraction, and metallicity

 $N_{\text{GaiaBH,MW}} \sim 6 \times 10^3 \left(\frac{\eta}{10^{-6}M} \right)$

Sufficiently large to explain the presence of Gaia BHs

$$\frac{1}{M_{\odot}^{-1}} \left(\frac{M_{\rm MW}}{6.1 \times 10^{10} M_{\odot}} \right) \left(\frac{f_{\rm cluster}}{0.1} \right)$$

Formation efficiency of Gaia NS

- Observation
- # of Gaia BHs (3) < # of Gaia NSs (21)

- Observation
- # of Gaia BHs (3) < # of Gaia NSs (21)
- Intrinsic population
- # of Gaia BHs ? # of Gaia NSs

- Observation
- # of Gaia BHs (3) < # of Gaia NSs (21)
- Intrinsic population
- # of Gaia BHs ? # of Gaia NSs

- Observation
- # of Gaia BHs (3) < # of Gaia NSs (21)
- Intrinsic population
- # of Gaia BHs ? # of Gaia NSs

- Observation
- # of Gaia BHs (3) < # of Gaia NSs (21)
- Intrinsic population
- # of Gaia BHs < # of Gaia NSs

- Observation
- # of Gaia BHs (3) < # of Gaia NSs (21)
- Intrinsic population
- # of Gaia BHs < # of Gaia NSs

• Formation efficiencies in open clusters • η of Gaia BHs $\gg \eta$ of Gaia NSs

- Observation
- # of Gaia BHs (3) < # of Gaia NSs (21)
- Intrinsic population
- # of Gaia BHs < # of Gaia NSs

P = 1000 day More easily discovered by astrometry a = 4.4 au BH: 10*M*_☉

• Formation efficiencies in open clusters • η of Gaia BHs $\gg \eta$ of Gaia NSs

Noticeable contradiction \implies Open clusters cannot form both.

• Gaia BH can be formed in dense star clusters. But, Gaia NSs...

- Gaia BH can be formed in dense star clusters. But, Gaia NSs...
- Isolated binary evolution X
 - Need higher α_{ce} (~ 10) than expected

- Gaia BH can be formed in dense star clusters. But, Gaia NSs...
- Isolated binary evolution **X**
 - Need higher α_{ce} (~ 10) than expected
- Open cluster 🗙
 - Underproduction of Gaia NSs compared to Gaia BHs (This talk)

- Gaia BH can be formed in dense star clusters. But, Gaia NSs...
- Isolated binary evolution X
 - Need higher α_{ce} (~ 10) than expected
- Open cluster 🗙
 - Underproduction of Gaia NSs compared to Gaia BHs (This talk)
- Triple star system X
 - Need higher α_{ce} (~ 10) than expected, again

- Gaia BH can be formed in dense star clusters. But, Gaia NSs...
- Isolated binary evolution X
 - Need higher α_{ce} (~ 10) than expected
- Open cluster 🗙
 - Underproduction of Gaia NSs compared to Gaia BHs (This talk)
- Triple star system X
 - Need higher α_{ce} (~ 10) than expected, again

- Gaia BH can be formed in dense star clusters. But, Gaia NSs...
- Isolated binary evolution X
 - Need higher α_{ce} (~ 10) than expected
- Open cluster 🗙
 - Underproduction of Gaia NSs compared to Gaia BHs (This talk)
- Triple star system X
 - Need higher α_{ce} (~ 10) than expected, again
- Gaia NS formation remains an open question.

Conclusions of this talk

- Gaia mission and its follow-up observations have discovered many inert compact binaries, so-called Gaia BHs and Gaia NSs.
- These Gaia BHs and Gaia NSs cannot be formed in the conventional binary evolution model (but see Kotko et al. 2024; Iorio et al. 2024; El-Badry et al. 2024; Poojan's talk).
- Gaia BHs can be formed efficiently in open clusters (Tanikawa et al. 2024, MNRAS, 527, 4031; see also Rastello et al. 2023; Di Carlo et al. 2024; Marin Pina et al. 2024).
- But, Gaia NSs cannot (Tanikawa et al. 2024, OJAp, 7, 39).
- Gaia NS formation remains an open question.

Conclusions of this talk

- Gaia mission and its follow-up observations have discovered many inert compact binaries, so-called Gaia BHs and Gaia NSs.
- These Gaia BHs and Gaia NSs cannot be formed in the conventional binary evolution model (but see Kotko et al. 2024; Iorio et al. 2024; El-Badry et al. 2024; Poojan's talk).
- Gaia BHs can be formed efficiently in open clusters (Tanikawa et al. 2024, MNRAS, 527, 4031; see also Rastello et al. 2023; Di Carlo et al. 2024; Marin Pina et al. 2024).
- But, Gaia NSs cannot (Tanikawa et al. 2024, OJAp, 7, 39).
- Gaia NS formation remains an open question.

Conclusions of this talk

- Gaia mission and its follow-up observations have discovered many inert compact binaries, so-called Gaia BHs and Gaia NSs.
- These Gaia BHs and Gaia NSs cannot be formed in the conventional binary evolution model (but see Kotko et al. 2024; Iorio et al. 2024; El-Badry et al. 2024; Poojan's talk).
- Gaia BHs can be formed efficiently in open clusters (Tanikawa et al. 2024, MNRAS, 527, 4031; see also Rastello et al. 2023; Di Carlo et al. 2024; Marin Pina et al. 2024).
- But, Gaia NSs cannot (Tanikawa et al. 2024, OJAp, 7, 39).
- Gaia NS formation remains an open question.

モロッコ Fu 姫路 Eihei

Fukui, Japan

ΞQ

If the past few months are any indication, tourism in Japan could surpass pre-pandemic levels in 2024. To escape the urban sprawl and see <u>one of the most spiritual</u> parts of the country, go to Fukui. Naomi Mano, president and chief executive of the Tokyo-based travel company <u>Luxurique</u>, says the city is a destination for temples, onsens (hot spring baths), art and food (specifically Echizen crab). With a new bullet train line set to open <u>in March</u>, travelers can get to Fukui from Tokyo in about three hours.

The Washington Post

Democracy Dies in Darkness

Subscribe

Sign in

Where to travel in 2024, without crowds" by the Washington Post

-ビスに関するフィードバックを送信 1000 km L

Natal kick?

- $m_1 = 10 M_{\odot}, m_2 = 1 M_{\odot}$
- $a_i = 0.025$ au, $e_i = 0 \Longrightarrow a_i = 2.5$ au
- Large kick velocity is needed ($v_k \gtrsim 250$ km/s).
- Center-of-mass velocity exceeds ~ 250 km/s.
 - Inconsistent with the fact that Gaia BHs are the Galactic disk components.
- Eccentricity is quite high ($\gtrsim 0.99$).
 - Inconsistent with moderate eccentricities of Gaia BHs (~ 0.5).

Natal kick?

- $m_1 = 10 M_{\odot}, m_2 = 1 M_{\odot}$
- $a_i = 0.025$ au, $e_i = 0 \Longrightarrow a_i = 2.5$ au
- Large kick velocity is needed ($v_k \gtrsim 250$ km/s).
- Center-of-mass velocity exceeds ~ 250 km/s.
 - Inconsistent with the fact that Gaia BHs are the Galactic disk components.
- Eccentricity is quite high ($\gtrsim 0.99$).
 - Inconsistent with moderate eccentricities of Gaia BHs (~ 0.5).

Natal kick?

- $m_1 = 10M_{\odot}, m_2 = 1M_{\odot}$
- $a_i = 0.025$ au, $e_i = 0 \Longrightarrow a_i = 2.5$ au
- Large kick velocity is needed ($v_k \gtrsim 250$ km/s).
- Center-of-mass velocity exceeds ~ 250 km/s.
 - Inconsistent with the fact that Gaia BHs are the Galactic disk components.
- Eccentricity is quite high ($\gtrsim 0.99$).
 - Inconsistent with moderate eccentricities of Gaia BHs (~ 0.5).

- $m_1 = 10M_{\odot}, m_2 = 1M_{\odot}$
- $a_i = 0.025$ au, $e_i = 0 \Longrightarrow a_i = 2.5$ au
- Large kick velocity is needed ($v_k \gtrsim 250$ km/s).
- Center-of-mass velocity exceeds ~ 250 km/s.
 - Inconsistent with the fact that Gaia BHs are the Galactic disk components.
- Eccentricity is quite high ($\gtrsim 0.99$).
 - Inconsistent with moderate eccentricities of Gaia BHs (~ 0.5).

The number of Gaia BHs captured by PBHs

• $N_{\rm GBH} = N_{\rm PBH} n_{\rm star} \sigma v T$

$$N_{\rm PBH} \sim 2 \times 10^{3} \left(\frac{M_{\rm DM}}{2 \times 10^{11} M_{\odot}} \right) \left(\frac{M_{\rm PBH}}{10 M_{\odot}} \right)^{-1} \left(\frac{f_{\rm PBH}}{10^{-3}} \right) \left(\frac{f_{\rm disk}}{10^{-3}} \right) \left(\frac{f_{\rm corotate}}{0.1} \right)$$

$$N_{\rm star} \sim 2 \ \mathrm{pc}^{-3} \left(\frac{M_{\rm disk}}{6 \times 10^{10} M_{\odot}} \right) \left(\frac{M_{\rm star}}{1 M_{\odot}} \right)^{-1} \left(\frac{R_{\rm disk}}{10 \mathrm{kpc}} \right)^{-2} \left(\frac{h_{\rm disk}}{100 \mathrm{pc}} \right)^{-1}$$

$$\sigma = \pi a^{2} \left(1 + \frac{G(M_{\rm PBH} + M_{\rm star})}{a v^{2}} \right) \sim 5.8 \times 10^{-10} \ \mathrm{pc}^{2} \left(\frac{M_{\rm PBH} + M_{\rm star}}{11 M_{\odot}} \right) \left(\frac{a}{1 \mathrm{au}} \right)^{-1} \left(\frac{v}{50 \mathrm{km/s}} \right)^{-1}$$

$$N_{\rm GBH} \sim 1 \left(\frac{N_{\rm PBH}}{2 \times 10^{3}} \right) \left(\frac{n_{\rm star}}{2 \mathrm{pc}^{-3}} \right) \left(\frac{\sigma}{5.8 \times 10^{-10} \mathrm{pc}^{2}} \right) \left(\frac{v}{50 \mathrm{km/s}} \right) \left(\frac{T}{10 \mathrm{Gyr}} \right)$$

- We reduce NS natal kicks to zero.
- The formation efficiency of Gaia NSs is still comparable to that of Gaia BHs.
- Moreover, Gaia NSs are formed from primordial binaries, not through dynamical capture.
- No need to consider Gaia NS formation in open clusters in this case.

No natal kick model

Frequency of 3rd stars

