

Realistic initial conditions for N-Body simulations of young stellar clusters

Elena Lacchin

19 August 2024

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Young stellar clusters

$$M = 10^{2} - 10^{5} M_{\odot}$$

Age = 10 - 100Myr
 $\rho > 10^{3}$ stars pc⁻³

- Nurseries of massive stars (Lada & Lada 03)
- Fundamental for shaping binary populations
- Short dynamical friction timescale mass segregation
- Important for the formation of stellar exotica like black holes, blue stragglers..
- Gaia BH3: the first BH belonging to a stellar cluster $M \sim 2 \times 10^3 - 4 \times 10^4 M_{\odot}$ (Balbinot+24)

Observed star-forming regions

Wide range of sizes, morphologies, and numbers of stars

Simulated molecular clouds

4Myr 10pc

Guszejnov+22

4

Cournoyer-Cloutier+23

Initial conditions for N-Body simulations

Plummer or King models

Goodwin & Whitworth04; Schmeja & Klessen06, Allison+10; Küpper+11; Parker+14, Di Carlo+19, Rastello+19 Daffern- Powell & Parker20, Livernois+21

Fractal

Hydrodynamic simulations

Moeckel & Bate10, Moeckel12; Parker & Dale13; Fujii & Portegies Zwart15, Ballone+21, Farias+22, Rantala+24_

Molecular cloud simulations

Radiation magnetohydrodynamic simulations with RAMSES (He+19)

- Star formation through sink particles
- Feedback from ionizing UV radiation

•
$$\overline{n}_{gas} = 1.8 \times 10^4 cm^{-3}$$

$$\cdot M_{\star} = 10^{3-4} \mathrm{M}_{\odot}$$

Simulations evolved for ~ 10 $t_{\rm ff}$, IC taken at 2-3Myr after the onset of SF

Log(Density) [cm⁻³]

From sink MF to realistic IMF

Joining-splitting algorithm

- Stars distributed following an IMF with Mstars=Msinks
- Sinks are joined or split to produce stars inheriting the position and velocity of their parent sinks.

Plummer distribution in virial eq. around the position of the sink

Wang+20

N-Body designed for modelling multiples and close encounters

- Long-range forces : Barnes–Hut particle tree \bullet
- Short range forces : \bullet
 - Fourth-order Hermite for stars and the centers-of-mass of multiple systems
 - Slow down algorithmic regularization for close-distance multiple systems

Important to explain the properties of the binary compact objects

Rapid binary population synthesis code

- On-the fly interpolation of pre-evolved stellar tracks (available PARSEC (Bressan+12) and MIST (Choi+16))
- Binary evolution prescriptions are based on analytic and semi-analytic formulas
- Easy to change stellar evolution prescriptions by substituting the stellar tracks

Setup

- Observational based binary population properties: 10⁻⁴
 - q, e and P distributed following Sana+12
 - $e_{max}(P), f_{bin}, f_{trip}$ from Moe & di Stefano 17
- External potentials with GALPY (Bovy15):
 - Galactic potential
 - Exponentially decaying gas potential
- Stellar and binary evolution with MOBSE and SEVN (Mapelli17, Iorio+23)

لما 0. 10 0.2 0.0

0.3

f_{bin}

0.1

0.0

0.6

10⁰

 $\hat{\mathbf{E}}_{\mathbf{Z}}^{10^{-2}}$

Evolution of the cluster

Hierarchical generative algorithm

Create multiple realizations maintaing the small scale structure

At every node is associated:

- Distance *l*
- Relative velocity *u*
- Mass ratio q

Torniamenti+22

Hierarchical generative algorithm

Create multiple realizations maintaing the small scale structure

Torniamenti+22

14

Summary

- Hydrodynamic simulations offer realistic initial conditions for N-Body simulations
- •When star formation is modelled through sinks a splitting-joining algorithm can be used to generate the initial conditions
- Hierarchical generative algorithm allows to create new realizations maintaing the small scales while changing the large scales
- These tools are used to study the formation and evolution of BH in young stellar clusters

Credits: ESO/WFI/2.2-m MP Northwestern Visualization/Carl Rodriguez

