19 August 2024

UNIVERSITÄT HEIDELBERG ZUKUNFT **SEIT 1386**

Elena Lacchin

erc

Realistic initial conditions for N-Body simulations of young stellar clusters

Young stellar clusters

- •Nurseries of massive stars (Lada & Lada 03)
- •Fundamental for shaping binary populations
- •Short dynamical friction timescale mass segregation
- •Important for the formation of stellar exotica like black holes, blue stragglers..
- •Gaia BH3: the first BH belonging to a stellar cluster $M \sim 2 \times 10^3$ – $4 \times 10^4 {\rm M}_{\odot}$ (Balbinot+24)

$$
M = 102 - 105Mo
$$

Age = 10 - 100Myr

$$
\rho > 103 \text{ stars pc}^{-3}
$$

Observed star-forming regions

Wide range of sizes, morphologies, and numbers of stars

4

Simulated molecular clouds

4Myr 10pc

He+19 Guszejnov+22 Cournoyer-Cloutier+23

Initial conditions for N-Body simulations

Fractal

Goodwin & Whitworth04; Schmeja & Klessen06, Allison+10; Küpper+11; Parker+14, Di Carlo+19, Rastello+19 Daffern- Powell & Parker20, Livernois+21

Plummer or King models

Hydrodynamic simulations

Moeckel & Bate10, Moeckel12; Parker & Dale13; Fujii & Portegies Zwart15, Ballone+21, Farias+22, Rantala+24

-
-

Molecular cloud simulations

Log(Density) [cm-3]

0

• $M_{\star} = 10^{3-4}$ M_O

Simulations evolved for \sim 10 t_{ff,} IC taken at 2-3Myr after the onset of SF

- •Star formation through sink particles
- •Feedback from ionizing UV radiation

$$
\cdot \overline{n}_{gas} = 1.8 \times 10^4 cm^{-3}
$$

Radiation magnetohydrodynamic simulations with RAMSES (He+19)

From sink MF to realistic IMF

Joining-splitting algorithm

- Stars distributed following an IMF with Mstars=Msinks
- Sinks are joined or split to produce stars inheriting the position and velocity of their parent sinks.

Plummer distribution in virial eq. around the position of the sink

- On-the fly interpolation of pre-evolved stellar tracks (available PARSEC (Bressan+12) and MIST (Choi+16))
- Binary evolution prescriptions are based on analytic and semi-analytic formulas
- Easy to change stellar evolution prescriptions by substituting the stellar tracks

Rapid binary population synthesis code
 Rapid binary population synthesis code multiples and close encounters

- Long-range forces : Barnes–Hut particle tree
- Short range forces :
	- Fourth-order Hermite for stars and the centers-of-mass of multiple systems
	- Slow down algorithmic regularization for close-distance multiple systems

Important to explain the properties of the binary compact objects

Setup

- Observational based binary population properties: 10^{-4}
	- q , e and P distributed following Sana+12
	- $e_{max}(P)$, f_{bin} , f_{trip} from Moe & di Stefano 17
- External potentials with GALPY (Bovy15):
	- Galactic potential
	- Exponentially decaying gas potential
- Stellar and binary evolution with MOBSE and SEVN (Mapelli17, Iorio+23)

 $Log(P)^{\pi}$
 \approx $\frac{1}{2}$ 0.2 0.0

 0.4

 0.3

 $t_{\textrm{bin}}^{\textrm{in}}$

 0.1

 0.0

0.6

 10^0

 $\sum_{Z}^{2} 10^{-2}$

Evolution of the cluster

12

Hierarchical generative algorithm

Create multiple realizations maintaing the small scale structure

At every node is associated:

- Distance *l*
- Relative velocity *u*
- Mass ratio *q*

Torniamenti+22

Hierarchical generative algorithm

14

Create multiple realizations maintaing the small scale structure

 10^{-1}

 $10¹$

Torniamenti+22

Summary

15

- **•Hydrodynamic simulations offer realistic initial conditions for N-Body simulations**
- **•When star formation is modelled through sinks a splitting-joining algorithm can be used to generate the initial conditions**
- **•Hierarchical generative algorithm allows to create new realizations maintaing the small scales while changing the large scales**
- **•These tools are used to study the formation and evolution of BH in young stellar clusters**

Credits: ESO/WFI/2.2-m MP

