R&D on liquid argon detectors

dr hab. Marcin Kuźniak, prof. CAMK PAN (Group 1 – SiPM systems for astroparticle and medical physics)

mkuzniak@camk.edu.pl

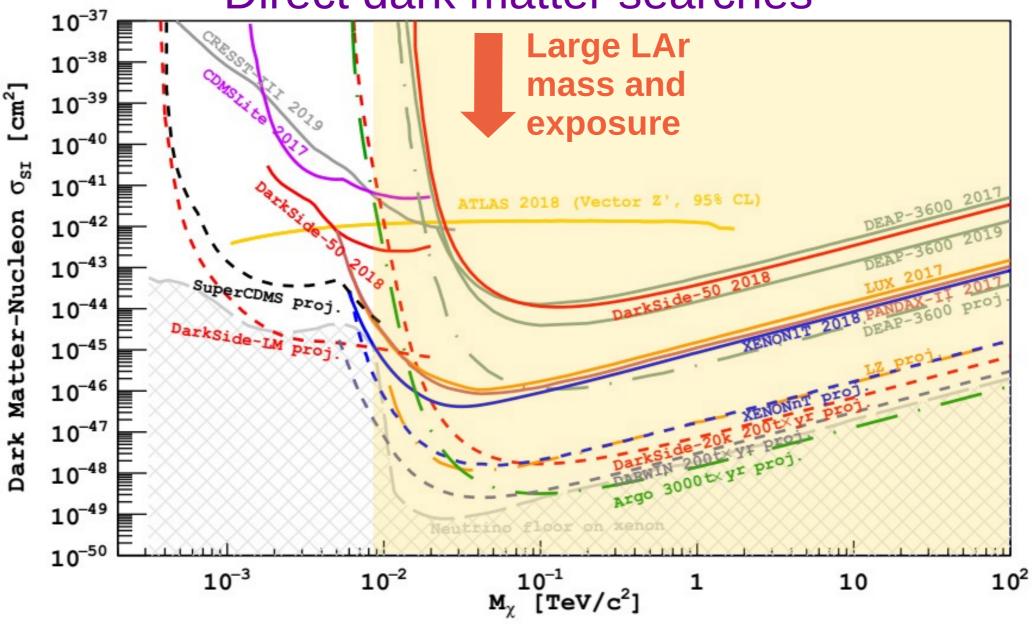
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480

European Union European Regional Development Fund

Wave

Group 1 profile

- Group members:
 - Leader Marcin Kuźniak
 - 2 PhD students:
 - Sarthak Choudhary
 - Pulse shape discrimination analysis + light collection optimization
 - Theo Hugues (cotutelle GeoPlant/CAMK and APC Paris)
 - DEAP-3600 physics data analysis
 - Annual modulation analysis for DarkSide-50
 - 2 Postdocs:
 - Michał Olszewski
 - Monte Carlo simulations
 - Marek Walczak
 - SiPM analysis software development, analysis and testing
 - Visiting scientist: Andre Cortez
 - Support from technicians and an engineer
- Access to electronics, chemistry and cryogenic (cleanroom) lab at CEZAMAT
- Cooperation agreement with the University of Warsaw, Chemistry Department



Direct dark matter searches

- Current detectors (DEAP) have several tons of liquid argon (LAr)
- Scale-up x100 needed for ARGO, with the ultimate sensitivity to the "neutrino floor"
- Roadmap in place for global consolidation of efforts and R&D

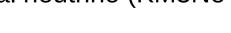
20-12-2023

Our specialty: light collection/detection in large LAr detectors Next generation detectors will have 100- 10000 m² of surface area

- Light collection
 - Wavelength shifter (WLS) materials
 - Liquid argon scintillates at 128 nm (VUV)
 - Proposed a new scalable material (PEN)
 - Developed concept for new wavelength shifting materials for background mitigation
 - Reflector and optics configuration/optimization
 - Photosensitive surface is expensive

• ... and light detection

- SiPM: new cutting edge devices, DarkSide-20k is the first experiment to use them on that scale
- Collaboration with DarkSide-20k:


Veto SiPM system: analysis, testing and development

Common challenge not only for dark matter, but also:

- Accelerator neutrino (DUNE, FLArE, Hyper-K)
 Astrophysical neutrino (KM3NeT)
- Neutrinoless double beta decay (LEGEND)

20-12-2023

Marcin Kuźniak

VUV (128 nm.

Ar

Visible light

Wavelength Shifter (WLS)

20cm x 20cm SiPM array

R&D at AstroCeNT

- Identified suitable PEN grade for WLS
 - Approved for DarkSide-20k veto
 - Panels for DarkSide-20k designed, cryotested for stability
- Synthesis of purified PEN

Eur. Phys. J. C 79, 291 (2019) Instruments 5, 4 (2021) Eur. Phys. J. C 81, 1099 (2021)

LIDINE 2023 proceedings

• Industrialized analytic code for light yield optmization and design studies

J. Phys.: Conf. Ser. 2156, 012236 (2021)

- PEDOT:PSS-based transparent electrodes, light and charge collection with WLS-FAT-GEM Eur. Phys. J. C 81, 609 (2021)
- Slow WLS (pyrene-doped PS) for surface background rejection
- TPB-doped polystyrene for applications in water
- DarkSide-20k veto SiPM testing

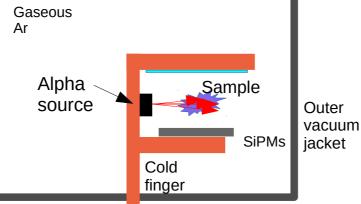
Nucl. Instrum. Methods Phys. Res. A 968, 163631 (2020) JINST 16, P12029 (2021) Nucl. Instrum. Methods Phys. Res. A 1034, 166683 (2022)

Front. Phys. 11, 1181400 (2023)

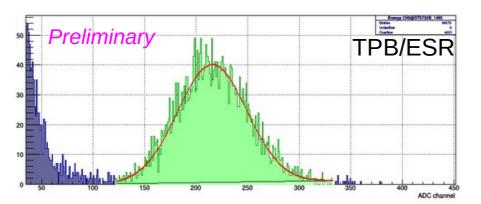
Synergies

- DS-20k, Identified suitable PEN grade for WLS
- LEGEND, DUNE
- Approved for DarkSide-20k veto
- Panels for DarkSide-20k designed, cryotested for stability
- ARGO, Synthesis of purified PEN

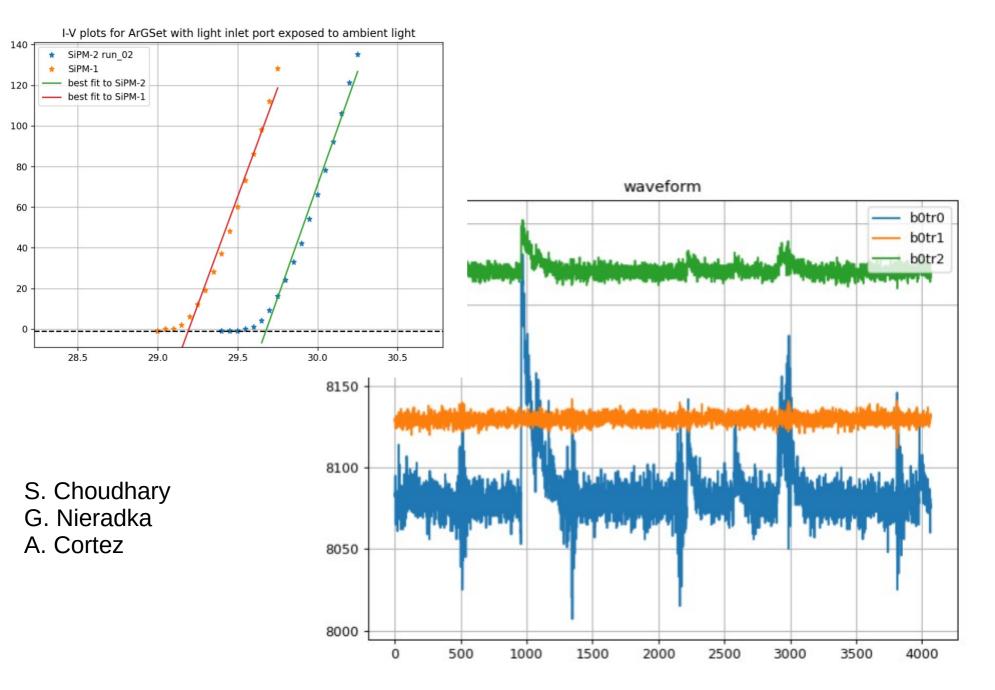
- DS-20k, Industrialized analytic code for light yield optmization and design studies ARGO, DUNE,
- FLArE
- DS-LM?
 PEDOT:PSS-based transparent electrodes, light and charge collection with WLS-FAT-GEM
 DUNE?
 FLARE?
- Slow WLS (pyrene-doped PS) for surface background rejection
- KM3NeT, TPB-doped polystyrene for applications in water Hyper-K?
- DS-20k DarkSide-20k veto SiPM testing


Test stand @ AstroCeNT for quality control

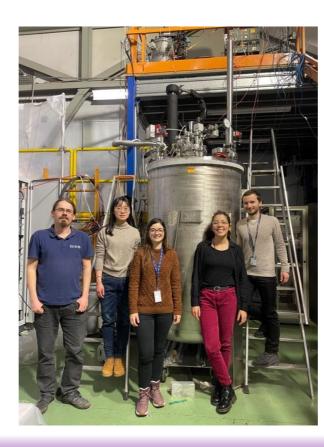
DarkSide-20k to use ~300 m2 of PEN as the WLS in the veto


- WLSE of various PEN grades, including samples of the same grade varies
- WLSE depends on the excitation wavelength AND temperature
- Developed an alpha-excited gaseous Ar cell with a cryogenic stage
- Recently successfully commissioned an alpha-excited gaseous Ar cell with a cryogenic stage for PEN WLS quality control

- QC for DarkSide-20k
- New materials
- Add a nanosecondpulsed VUV source
- Gaseous TPC configuration



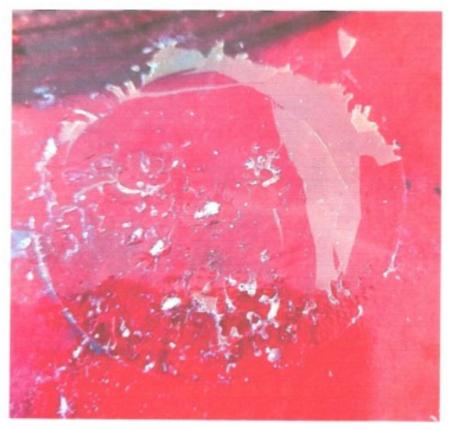

20-12-2023


Ongoing calibration work



General purpose WLS reflector campaign

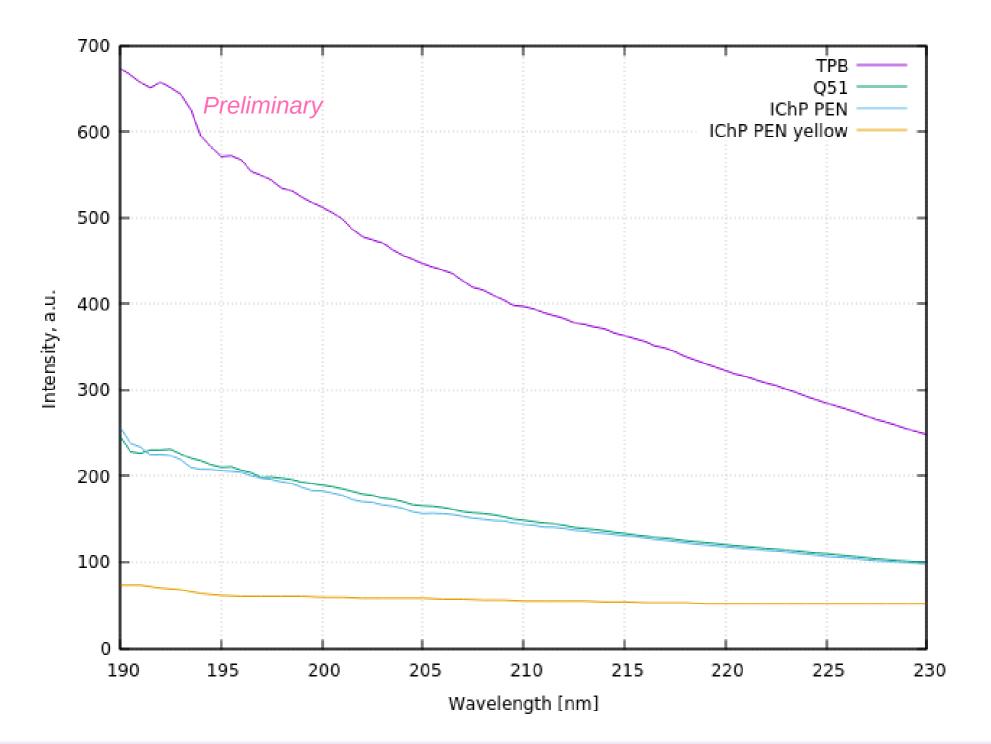
- Jointly with TUM, Uni Zurich, NIKHEF, Uni Edinburgh and CERN
 - Groups from LEGEND, DUNE and DarkSide-20k
- Most promising combination of reflector (ESR) and PEN identified with table-top measurements (Zurich, TUM, Astrocent)
- Large scale LAr test completed at CERN in February to demonstrate light yield and light yield **stability over 2 weeks** long run with an alpha source inside:
 - 1 m tall aluminum cage lined with ESR/PEN (LAr gap inbetween)
 - Viewed by 2 PMTs from the top (Vis and VUV)
 - Analysis currently ongoing



Custom synthesis

- In collaboration with Sławomir Pawłowski (Łukasiewicz Research Network – Institute of Industrial Chemistry in Warsaw)
- Starting from affordable and abundantly available base chemical
- Controlled conditions: no exposure to light, purified base chemicals
- After synthesis pressed into foils (>7kg is the threshold for drawing foils)

At first mixed results and visible yellow tint of the product (effect of temperature and impurities)



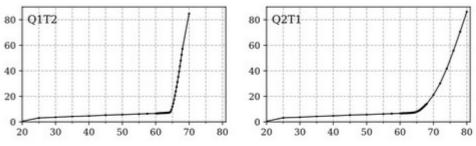
20-12-2023

Custom synthesis II

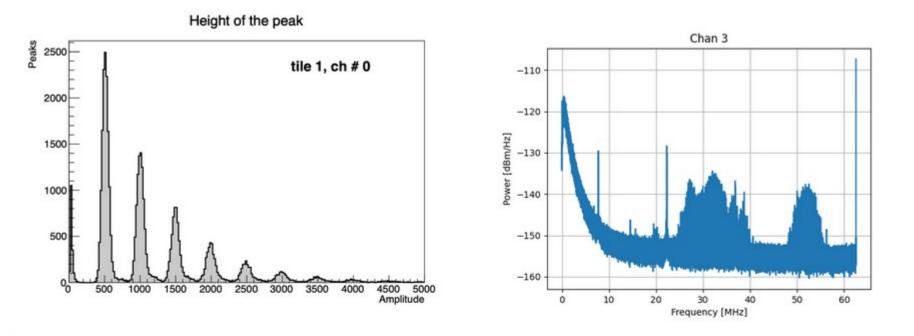
- After multiple iterations and improvements, in last weeks finally clean white product!
- High crystallinity results in white color; becomes translucent when heated up and cooled down
- Next step: press into foils and compare with commercial PEN
- Might be useful in the current form as a diffuse WLS reflector
- Synthesis is scalable. Working on acquiring dedicated funds.

DS-20k veto SiPM module testing

- ISO-7 class cleanroom in CEZAMAT laboratory Allows tests of 5 (10) units per
- cooldown
- CAEN power supplies and VX2740 digitizer


Slide courtesy M. Walczak

DS-20k veto SiPM module testing


- Setup commissioning during Alice's Hammer (Edinburgh) visit (11 - 15 Sep 2023)
- First data successfully taken at warm:
- vPDU2 Warm test @ AstroCeNT IV Curves

- vPDU workshop 18 19 Sep 2023
- Participants from INFN,
 University of Warwick,
 Edinburgh, Lancaster, and Royal
 Holloway University of London
- Discussions on the schedule, technical details of the setups and list of required tests Slide courtesy M. Walczak

20-12-2023

DS-20k veto SiPM module testing

	Bias_V	SNR	1peAmp_mV	DN_Hz_per_mm2	CDA	rms_mV	DiCT_prob	SNRError
Q1T1	68	9,727	15,246	0,155	0,071	1,512	0,393	0,022
Q1T2	68	11,289	15,484	0,173	0,076	1,340	0,362	0,024

- Results obtained for vPDU2 in Warsaw are consistent with earlier test run at INFN Napoli
- We carried out full training for PhD students
- Setup is now fully operational and ready for full scale testing

Slide courtesy M. Walczak

20-12-2023

Data analysis

- In addition to SiPM event reconstruction for DS-20k (M. Walczak) ...
- Joint DarkSide-50 annual modulation analysis with APC
 - T. Hugues
 - M. Kimura, M. Wada (Group 4)
- Continued analysis effort on DEAP-3600 dark matter search
 - Pulse shape discrimination
 - S. Choudhary
 - M. Gupta, P. Gawron (Group 5)
 - Boosted dark matter analysis
 - T. Hugues, V. Ivanyan, M. Walczak
 - S. Trojanowski (Group 6, theory support)

New collaboration

DRD2 collaboration (Detector R&D, Task Force 2: Liquid Detectors) is forming:

- Proposal submitted and approved by ECFA and CERN
- Kick-off meetings and MoU drafting to start early next year
- Flexible platform to collaborate on multiple topics of common interest for AstroCeNT and APC

	Charge Readout Conveners	Light Readout Conveners	Target Properties Conveners	Scaling-up Challenges Conveners
А.	Pixels & charge+light Group leaders J. Asaadi (US) & E.Gramellini(UK) Charge-to-light, electroluminescence & amplification Group leaders Deisting (DE) & K. Mavrokoridis (UK) lon detection Group leaders	Increased sensor quantum efficiency Group leaders J. Monroe(UK), F. Retiere (CA) & P. Agnes(IT) Higher efficiency WLS and collection Group leaders C. Cuesta (ES), M. Kuzniak (PO) & J. Martin-Albo (ES) Improved sensors for LS & WC Group leaders	Target properties and isotope loading of LS & WC Group leaders S. Schopmann (DE), H.Steiger (DE) & M. Wurm(DE) Target properties and isotope loading of noble elements Group leaders	Radiopurity & background mitigation Group leaders J. Dobson (UK) & R. Santorelli (ES) Detector and target procurement/production & purification Group leaders W. Bonivento (IT) & Y. Meh (US) Large-area readouts Group leaders
1	No current representation, but topic to consider for future	M. Bongrand (FR) & T. Lachenmaier (DE) Entirely covered by DRD4, serves as liaison	D. Franco (FR) M.C. Piro (CA), A. Szeic(UK) & A. Zani (IT)	J. Crespo (ES) & G. Fiorillo (IT) Material properties Group leaders

20-12-2023

Grants

Completed

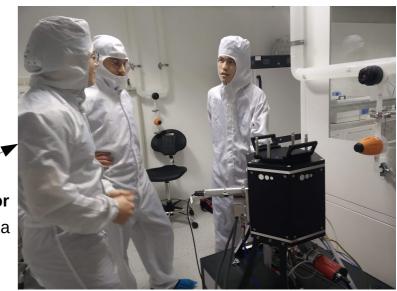
- European Commission Horizon 2020 Twinning, "DarkWave: Novel technologies for dark matter search and frontier astroparticle physics experiments"
 - 900 kEUR budget
 - Consortium of CAMK (coordinating institution), APC/CNRS, GSSI, INFN and TUM
 - Training, travel, short and long-term exchange support for all AstroCeNT groups
 - Enables key contributions to DarkSide-20k, Virgo, Einstein telescope:
 - Measurement campaigns
 - Study visits
 - Workshops and meetings
 - Up to 10% for equipment
 - Admin. coordination / communication by Y. Hoika

Ongoing

• M. Kuźniak, 2.1 MPLN/ 3 yr, Search for dark matter with liquid argon detectors, OPUS, NCN

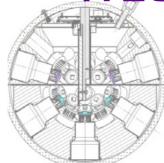
Submitted

• 3 proposals from Andre Cortez (NCN Sonata, FNP First Team, MSCA PF)



Summary

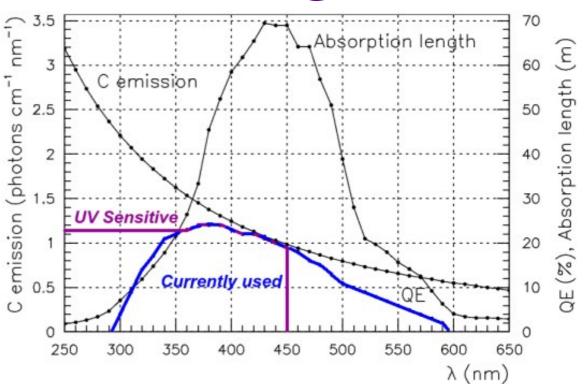
- Active on DEAP-3600 and DarkSide-20k data analysis
- New hardware capabilities:
 - vPDU cryogenic test setup
 - Access to UV/Vis/NIR spectrophotometer
 - Cryogenic gaseous Ar cell for WLS characterization
 - Thin film deposition: spray gun, **10" spin-coater** and **10" vacuum evaporator**
 - Recently received funding for a cryogenic optical characterization facility with a nanosecond pulsed VUV light source


- Continued R&D on several fronts:
 - Scalable and/or specialized wavelength shifters
 - New scheme for light and charge collection: WLS FAT GEMs
 - SiPM testing
- Potential for broader (grant) applications: photovoltaics, organic / flexible photosensors
- Major efforts in 2024 at AstroCeNT:
 - DarkSide-20k veto SiPM testing campaign
 - PEN QC for DarkSide-20k
 - Gaseous TPC assembly and commissioning
 - Nanosecond-pulsed VUV source procurement
 - Teaming and industry grant preparation

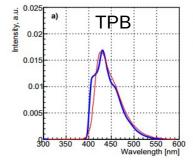
20-12-2023

Thank you!

WLS synergy with KM3NeT@APC

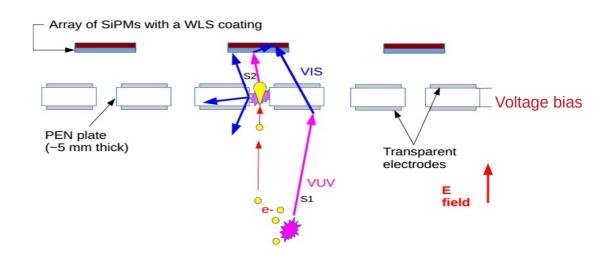


Requirements:


- WLS has to be on the outside of glass spheres:
 - Seawater compatible!
 - Good adhesion to glass
 - ... or completely decoupled from glass
- Purple or blue emission
- Good long term stability (~10 years?)
 - Mechanical & chemical
- Scalability

Development of TPB-doped polystyrene coatings

 The first batch of coated glass samples tested

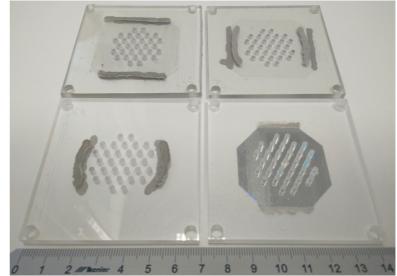


20-12-2023

WLS GEM detector

Proposed & prototyped a new type of detector for simultaneous charge and light detection

(GEM: gaseous electron multiplier)


PEN wavelength shifting tiles

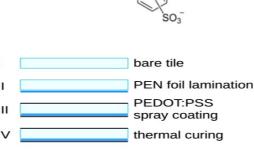
Spray coated polymeric (PEDOT:PSS) transparent electrodes

- own technique!
- successful proof-of-principle tests in gaseous Xe and Ar

Expecting **tripled** light collection & better scalability w.r.t. wire grid TPCs

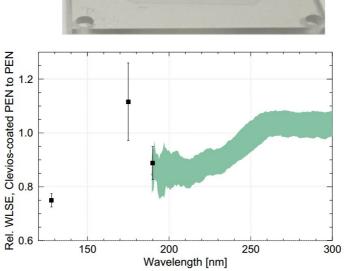
Proposed (Kuźniak), fabrictated (Sworobowicz), optically characterized (Nieradka) and simulated (Turkoglu) at AstroCeNT.

NATIONAL SCIENCE CENTRE



20-12-2023

Transparent electrode production


- PEDOT:PSS conductive polymer, deposited from solution
- Can give very transparent coatings:
 - Substantially diluted
 - Airbrushed
 - Thickness in range of O(10) nm
- Optical properties
 - 95 99% transmission (visible)
 - Low refractive index
 - Low haze
 - Tunable conductivity
 - VUV transmission

/

20-12-2023