A search for sdBVs and stellar kinematics correlations

Sumanta Kumar Sahoo^{1,2} Andrzej Baran^{2,3}

1. Nicolaus Copernicus Astronomical Center of Polish Academy of Sciences

2. Ardastella Research Group

3.Astronomical Observatory, University of Warsaw

CAMK Annual Meeting 2024 1st February, 2024

Pulsation analyses of six hot subdwarf stars

- We did a detailed asteroseismic analyses of six gravity-mode sdBVs observed in the SC mode by TESS
- These sdBVs are TIC 262753627, TIC 269766236, TIC 298109741, TIC 311432346, TIC 331553315, and TIC 367003034
- We determined the mode degrees of these targets using asymptotic period spacing. We did not detect any multiplet splittings
- We collected atmospheric parameters of TIC 262753627, TIC 298109741, TIC 311432346, and TIC 331553315 from the literature and did spectroscopic observations of TIC 269766236 at SAAO, of TIC 298109741 at APO, and of TIC 367003034 at IAO
- Using the identified mode degrees and atmospheric parameters in the evolutionary model calculated by Ostrowski et al. (2021) using MESA, we derived the physical properties of these stars

Sahoo et al. 2024 (in review)

Pulsations vs helium abundance

- We collected the surface parameters for 1577 hot subdwarfs from Luo et al. (2021) out of which 76 are known pulsators.
- Subdwarfs are divided in four groups according to their helium contents: extreme He-rich (eHe), intermediate He-rich (iHe), He-weak (wHe), He-poor (pHe)
- g-mode pulsators → helium-poor, p-mode pulsators → helium-weak
- Three out of four iHe hot subdwarfs we found thus far are g-mode pulsators

Pulsations vs Galactic populations

- We derived space velocities (U, V, and W), orbital angular momentum (Lz) and orbital eccentricity (e) for 142 subdwarf pulsators, using the Galpy (Bovy 2015).
- Using the U-V, Lz-e, and orbit shapes, we derived their galactic membership (Luo et al. 2021).
- We grouped these sdVs according to their pulsation type and population membership
- The majority of pulsators are in thin and thick disk populations, which is expected
- This conclusion might be biased with our limited sample

	g-mode				p-mode		hybrid
Halo	283870336				68495594		
					167746025		
					1204510934		
Thick disk	57257430	178893906		367003034 371813244	4632676	207440585	
	82049981	194807290			8787069	219492314	
	122673493	279433960		371833573	47377536	266013993	138618727
	147349694	330658435		381203990	55753808	322009509	355754830
	154510451	332742020		397064286	82359147	437051820	
	101010101				115280751	801909110	
Thin disk	4161582	118032308	269766236	352480413			
	9346617	118297100	270695353	369394241			
	9358354	120638388	273084007	384992041			
	14680532	121212691	273875093	388940683			
	17561485	138623536	274623605	389175842			
	20448010	138707823	278659026	404635917	6116091	202354658	
	21223262	142491300	281269725	405266556	60985176	240868270	
	26491429	152373379	292467033	405799245	62483415	248949857	13145616
	27782233	156623726	293165262	415339307	63168679	273255412	69298924
	33834484	158215363	298109741	418789164	70549283	291032641	169285097
	39947484	158488181	298542142	429807453	136975077	355058528	271164763
	40050637	158918567	309658435	437746793	142200764	366656123	409644971
	43965472	159734503	311432346	439905042	165312944	387107334	437043466
	46363456	161402643	317439554	455755305	175402069	396954061	
	63449095	184607974	321287961	457168745	186484490	436579904	
	63719894	219225205	331553315	458452988			
	66493797	234295068	334901449	461346891			
	67584818	239930769	344719037	466277784			
	80290366	240109525	345451496	468980287			
	80427831	260795163	347435900	800026675			
	101817287	262753627	352315023				

Contribution to the articles in 2023

- Sahoo, S. K., Baran, A. S., Worters, H. L., N'emeth, P, & Kilkenny, D. (2023). A search for variable subdwarf B stars in TESS Full Frame Images III. An update on variable targets in both ecliptic hemispheres – contamination analysis and new sdB pulsators. MNRAS, 519 (2), 2486-2499
- Saran, A. S., Van Grootel, V., Ostensen, R. H., Worters, H. L., Sahoo, S. K., Sanjayan, S., Charpinet, S., Nemeth, P., Telting, J. H., & Kilkenny, D. (2023). Short-period pulsating hot-subdwarf stars observed by TESS I. Southern ecliptic hemisphere. A&A, 669, A48
- Sahoo, S. K., Baran, A. S., N'emeth, P, Worters, H. L., Pramod Kumar, S., Joshi, S., & Kilkenny, D (2024). Seismic modeling of six pulsating hot subdwarfs observed by TESS and Galactic population study of hot subdwarf pulsators. A&A (in review)

Thank You