

CAMK yearly meeting 01.02.2024

Study of cosmic ray muons with KM3NeT

Piotr Kalaczyński

Work supported by:

KM3NeT detectors: brief summary

KM3NeT muon simulation chain

Here:

- sea sea surface above the KM3NeT detectors
- $\ensuremath{\textit{can}}\xspace \ensuremath{\textit{cyllindrical volume around the detector}\xspace}$
- **light** simulation of the γ emission inside the can (including the environmental bgd)
- trigger preselection of interesting events by applying trigger conditions
- **reconstruction** reconstruction of observables, like energy, direction etc.

My	work:
	Running CORSIKA:
	 Test productions
	 Mini-prods for systematic studies
	 First mass prod
	gSeaGen development: git.km3net.de/opensource/gseagen
	Implementation of CORSIKA processing
	Improvements in the propagation routine:
	 Speed-up: for EeV 1w -> 40min
	 Earth's curvature
	 Statistics optimization: muon range
	tolerance margin, possibility to retry
	propagation etc.
	 More in the publication [under review]:

• More in the publication [under review]: "gSeaGen code by KM3NeT: an efficient tool to propagate muons simulated with CORSIKA" (to be submitted to: Comp. Phys. Comm.)

Reconstruction of new observables

KM3NeT muon simulation chain

- can cyllindrical volume around the detector
- **light** simulation of the γ emission inside the can (including the environmental bgd)
- trigger preselection of interesting events by applying trigger conditions
- reconstruction reconstruction of observables, like energy, direction etc.

Reconstruction of multiplicity

Example of reco results: muon multiplicity for ARCA115 Analogical results for ARCA6, ORCA115 i ORCA6 (and for 2 other observables)

Sensitivities vs time

Comments:

- Sensitivity limited by systematics
- Should improve by the time we complete the construction
- IceCube uncertainty: various CR models

full analysis covered in my PhD thesis: https://bip.ncbj.gov.pl/attachments/download/258

Summary

TL&DR:

- KM3NeT detectors under construction, already collect valuable data *
- Reliable muon simulations necessary *
- Succesfull reco of N_{μ} , E_{bundle} , E_{prim} *
- hank you for your attention. Complete ARCA & ORCA will confirm prompt muon flux in first few * years of operation
- Stay tuned for more results! ③ *

European Union Foundation for

Promieniowanie kosmiczne

Promieniowanie kosmiczne (CR):

Wysokoenergetyczne cząstki i jądra atomowe docierające do Ziemi z kosmosu

Odkryte przez Victora Hessa w 1912 (nagroda Nobla w 1936)

Od tego czasu pomiarów było całkiem sporo ...

Ale zaraz, na tym wykresie nie ma mionów ... !?

Wielkie pęki atmosferyczne (EAS)

Miony <u>nie</u> są częścią pierwotnego promieniowania kosmicznego!

Są cząstkami wtórnymi produkowanymi w ...

Wielkich pękach atm. (EAS):

- Powodują je cząstki pierwotne CR
- ✤ Większość zaczyna się na wysokości *h*~30 – 40km
- ✤ 3 komponenty:
 - elektromagnetyczny
 - hadronowy
 - <u>mionowy</u>

10

Niepewności systematytczne: wyniki

Indywidualne i połączone wkłady do niepewności systematycznej:

- ✤ Jeżeli są punkty wzdłuż linii: interpolacja
- Zakres energii odpowiada naszej symulacji CORSIKA

Pęki mionowe

Pęk mionów:

Miony pochodzące z tego samego EAS

Kilka istotnych własności:

Zmienna	Opis	Standardowa rekonstrukcja?	
$\cos \theta_{\text{zenith}} = \frac{\sum \cos \theta_{\text{zenith}}}{N_{\mu}}$	Kierunek (zenit)	dobra	
$E_{\rm bundle} = \sum E_{\mu}$	Energia pęku	<mark>raczej zła</mark> (skupia się tylko na przypadkach z 1 mionem)	
<i>E</i> _{primary}	Energia cząstlki pierwotnej	brak	
N_{μ}	Krotność mionów w pęku	brak	

wymagały nowych narzędzi do rekonstrukcji

Przykład wyników dla ARCA115:

Analogiczne wyniki dla ARCA6, ORCA115 i ORCA6

Rekonstrukcja energii pęku zastosowana do danych (ARCA6)

15

Przykład wyników dla ARCA115:

Analogiczne wyniki dla ARCA6, ORCA115 i ORCA6

Rekonstrukcja energii CR zastosowana do danych (ARCA6)

Analogiczne wyniki dla ORCA6

LightGBM

Wyniki uzyskane z danych ARCA6/ORCA6:

- Pierwszy pomiar energii cząstki pierwotnej detektorami KM3NeT
- Wkład wysokich energii niedoszacowany przez symulacje (analogicznie jak przy energii pęku, czego należało się spodziewać)
- Na tą chwilę nie można nic stwierdzić o granicy Greisena–Zatsepina–Kuzmina (GZK)

*granica GZK – teoretyczne górne ograniczenie na możliwe energie promieniowania kosmicznego, związane z oddziaływaniami z kosmicznym mikrofalowym promieniowaniem tła (CMB)

Rekonstrukcja krotności zastosowana do danych (ARCA6)

Analogiczne wyniki dla ORCA6

LightGBM

Wyniki uzyskane z danych ARCA6/ORCA6:

Pierwszy pomiar krotności mionów detektorami KM3NeT:

- Ex aequo ze S. Reckiem używającym danych ORCA4
- Pierwszy w ogóle dla ARKI

Wysokie krotności również niedoszacowane w symulacji

Strumień mionów zawiera zarówno wkład promptowy jak i konwencjonalny.

Rozkłady obserwabli

Rozkłady obserwabli: kierunek zenitalny

Zenit okazał się nieprzydatny (TS \approx 0) dla tej analizy, pokazuję jedynie dla

Rozkłady obserwabli: energia pęku

Komentarze:

- Analiza jest zdecydowanie czuła na energię pęku
- Wygląda na to, że nawet przy energiach rzędu TeV jest różnica między hipotezami

Rozkłady obserwabli: krotność mionów

Komentarze:

- Krotność mionów również jest użyteczna
- Najlepsza czułość dla pęków składających się średnio z ~40 mionów

Optymalizacja obszaru krytycznego

Detektor	Min <i>E</i> _{bundle} [TeV]	Min N_{μ}
ARCA115	251	40
ARCA6	251	40
ORCA115	16	40
ORCA6	16	40

Dla mniejszych konfiguracji detektorów użyłem tych samych wartości jak dla pełnych dla lepszej porównywalności.

Optymalizuję tylko dolne granice, ponieważ ograniczenie od góry nie poprawia czułości testu (dla wysokich energii i krotności sygnału jest tylko więcej).

więcej szczegółów w slajdach zapasowych ...

Czułości vs niepewności systematyczne

Komentarze:

- systematyka wpływa silniej na większe konfiguracje
- jej redukcja może dramatycznie polepszyć czułość
- będzie to wymagało kosztownych dedykowanych symulacji

Detector design summary

DOM production:(@Nikhef)

Preparation for deployment:

String deployment:

More at: youtube.com/KM3NeTneutrino

Water Cherenkov ν telescopes

Comments:

- prompt flux normalisation has a linear effect on sensitivity
- still, systematics are the dominant issue

We have 2 options:

- 1. <u>MUPAGE</u> (atmospheric **MU**ons from **PA**rametric formulas: a fast **GE**nerator for neutrino telescopes)
 - developed for ANTARES
 - fast muon MC generator
 - based on parametric formulas and MACRO measurements
 - parameters can be freely tuned

2. CORSIKA (COsmic Ray SImulations for KAscade)

- developed for KASCADE
- full simulation of air showers
- customizable (models, primaries, etc.)

Metoda:

- Niepewności liczone indywidualnie dla każdego przypadku, tzn. oszacowuję $\Delta w_{\text{event}}(E_{\text{prim}})$
- Jeżeli to możliwe, osobne oszacowania wkładów dla detektorów ARCA and ORCA
- Każda niepewność liczona jako: $\frac{\max-\operatorname{domyślne}}{\operatorname{domyślne}}$ albo $\frac{\operatorname{domyślne}-\min}{\operatorname{domyślne}}$
- ✤ 3 podejścia:
 - [2,3] Dedykowane mini-produkcje CORSIKI (tylko pionowe pęki, dla ustalonych wartości E_{prim}, 1.11 · 10⁷ pęków/rodzaj cząstki pierwotnej)
 - [1] Pakiet crflux (bezpośrednie oszacowanie strumienia CR)
 - [4,5] Dedykowane mini-produkcje MUPAGE'a (wygenerowane przez Andreya Romanova)

Uwzględnione źródła niepewności:

- 1. Modele strumienia cząstek pierwotnych CR
- 2. Wysoko-energetyczne modele oddziaływań hadronowych
- 3. Sezonowe różnice w profilu gęstości atmosfery
- 4. Efektywność fotopowielaczy
- 5. Długości absorpcji światła w wodzie

domyślnie: GST3 domyślnie : SIBYLL 2.3d domyślnie : dopasowanie do atmosfery MSIS2.0 uśrednionej po porach roku i lokalizacji (ARCA i ORCA) domyślnie : wartość nominalna (<u>A. Romanov</u>) domyślnie : wartość nominalna (<u>A. Romanov</u>)

Light sensors

Digital Optical Module (DOM)

acrylic glass sphere with:

- 31 3" PMTs,
- readout electronics, ٠
- pressure gauge, ٠
- acoustic sensonrs,

2022 JINST 17 P0703

Photomultiplier Tube (PMT)

converts light into electric signal

JINST13 (2018) P05035

DOM arrangement

Detection Unit (DU): vertical string with 18 DOMs

Eur. Phys. J. C 76 (2016) 76:54

Naming:

 $ORCA6 \leftrightarrow ORCA$ with 6 strings ARCA2 \leftrightarrow ARCA with 2 strings etc.

DOM arrangement

Detection Unit (DU): vertical string with 18 DOMs

Eur. Phys. J. C 76 (2016) 76:54

Naming:

ORCA6 \leftrightarrow ORCA with 6 strings ARCA2 \leftrightarrow ARCA with 2 strings etc.

ML reco: features used for reconstruction

KM3NeT/ARCA115 Preliminary 3DSHOWER trig hit amplitude sum -1.0 0.3 0.4 1.0 0.3 0.4 1.0 0.3 0.4 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0 3DSHOWER_trig_hit_amplitude_avg - 0,7 -0.0 0.0 0.0 -0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 3DSHOWER trig hit amplitude std -3DMUON trig hit amplitude sum - 1.0 0.3 0.4 1.0 0.3 0.4 1.0 0.3 0.4 -0.1 0.1 0.0 0.0 -0.1 -0.0 0.0 -0.1 0.1 -0.0 -0.0 -0.1 -0.0 0.0 -0.1 0.5 -0.1 0.1 0.0 0.0 -0.1 -0.0 0.0 -0.1 3DMUON trig hit amplitude avg -1 -01 -0.0 0.0 -0.0 -0.0 -0.1 -0.4 -0.0 0.1 -0.0 -0.0 -0.1 0.0 0.0 -0.1 0.4 -0.1 -0.1 -0.0 0.0 -0.0 0.0 -0.0 -0.1 0.4 0.3 0.3 0.3 0.3 0.4 0.2 0.2 0.3 0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 3DMUON trig hit amplitude std -3DMUON_3DSHOWER_trig_hit_amplitude_sum - 1.0 0.3 0.4 1.0 0.3 0.4 1.0 0.3 0.4 -0.1 0.0 3DMUON 3DSHOWER trig hit amplitude avg -3DMUON 3DSHOWER trig hit amplitude std 0.5 -0.1 -0.1 -0.0 0.0 -0.0 -0.0 0.0 -0.1 0.4 0.4 0.4 0.4 0.3 0.5 0.2 0.3 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.3 first_3DSHOWER_trig_hit_pmt_dir_y --0.0 0.0 last 3DMUON trig_hit_pent_dir_x - 0.0 + 0. 3DMUON_trig_hits_duration - 0.5 0.3 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.0 0.0 0.2 0.0 0.0 -0.2 10 0.1 0.0 0.0 -0.1 0.0 0.0 -0.2 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.5 0.8 0.5 0.7 0.5 0.4 0.4 0.4 0.4 0.4 0.9 0.8 0.6 0.3 0.3 0.3 0.3 3DMUON trig hits -1 horizontal span_3DSHOWER_trig_hits - 0.5 0.3 0.4 0.5 0.4 0.4 0.5 0.4 0.5 -0.1 -0.1 0.0 -0.0 -0.1 0.0 -0.0 -0.2 0.8 0.0 0.2 0.0 -0.0 -0.2 0.0 -0.0 -0.1 0.7 -0.1 -0.1 0.0 -0.0 -0.1 0.0 -0.0 -0.2 0.2 0.2 0.2 0.6 0.3 1.0 0 6 0.3 1.0 0.3 0.6 0.4 0.2 0.2 0.2 0.2 .2 0.2 0.1 0.2 0.4 0.4 0.4 0.4 0.4 6 0.1 0.1 0.1 true multiplicity - 0.7 0.2 0. true_multiplicity_selected_mu-0.2 0.3 0.7 0.2 0.3 0.7 0.2 0.3 -0.1 0.0 0.0 -0.0 -0.1 -0.0 0.0 -0.1 0.3 0.0 0.1 -0.0 -0.0 -0.1 -0.0 0.0 -0.0 0.4 total_true_primary_energy true energy -

In total: 46 features (+4 targets)

1.00

-0.75

-0.50

-0.25

-0.00

-0.50

-0.75

-1.00

Pearson correlation coefficient

Example for ARCA115

(the same was done for ARCA6, ORCA115 and ORCA6)

ML reco: feature clustering

KM3NeT/ARCA115 Preliminary

Cluster distance cutoff is arbitrary

Clusters are marked by different colors

Example for ARCA115 (the same was done for ARCA6, ORCA115 and ORCA6)

Bundle energy reco: best ML model selection

Performance comparison on a fraction (50k events) of the training dataset:

Bundle energy reco: best ML model selection

Speed comparison on a fraction (50k events) of the training dataset:

LightGBM:

- ✤ not the fastest, but still very decent
- + it turned out to scale up very well (entire dataset is orders of

magnitude larger)

These times were obtained running with 20 CPU cores in parallel

Bundle energy reco: learning inspection

Here we see why 50k events were fine for testing (but e.g. 5k would not be) Here I just compare LightGBM (no tuning whatsoever) and JMuon reco (non-ML reco)

JMuon

LightGBM

Comparison in 1D:

Bundle energy reco: feature importance

KM3NeT/ARCA115 Preliminary overlays horizontal_span_3DMUON_3DSHOWER_trig_hits vertical_span_3DMUON_3DSHOWER_trig_hits horizontal span_3DMUON_trig_hits vertical span 3DMUON trig hits horizontal span 3DSHOWER trig hits vertical span 3DSHOWER trig hits 3DMUON 3DSHOWER trig hits 3DMUON trig hits 3DSHOWER trig hits 3DMUON_3DSHOWER_trig_hits_duration -last_3DMUON_3DSHOWER_trig_hit_pmt_dir_z last_3DMUON_3DSHOWER_trig_hit_pmt_dir_y last_3DMUON_3DSHOWER_trig_hit_pmt_dir_x first_3DMUON_3DSHOWER_trig_hit_pmt_dir_z first_3DMUON_3DSHOWER_trig_hit_pmt_dir_y = first_3DMUON_3DSHOWER_trig_hit_pmt_dir_y = first_3DMUON_3DSHOWER_trig_hit_pmt_dir_x distance_first_3DMUON_3DSHOWER_trig_hit_to_det_edge distance last 3DMUON 3DSHOWER trig hit to det edge 3DMUON trig hits duration last_3DMUON_trig_hit_pmt_dir_z last_3DMUON_trig_hit_pmt_dir_y last_3DMUON_trig_hit_pmt_dir_x -first_3DMUON_trig_hit_pmt_dir_z first_3DMUON_trig_hit_pmt_dir_y first_3DMUON_trig_hit_pmt_dir_x distance_first_3DMUON_trig_hit_to_det_edge distance_last_3DMUON_trig_hit_to_det_edge 3DSHOWER trig hits duration last_3DSHOWER_trig_hit_pmt_dir_z last_3DSHOWER_trig_hit_pmt_dir_y last_3DSHOWER_trig_hit_pmt_dir_y last_3DSHOWER_trig_hit_pmt_dir_x = first_3DSHOWER_trig_hit_pmt_dir_y = first_3DSHOWER_trig_hit_pmt_dir_y = first_3DSHOWER_trig_hit_pmt_dir_x = distance_first_3DSHOWER_trig_hit_to_det_edge distance_last_3DSHOWER_trig_hit_to_det_edge 3DMUON_3DSHOWER_trig_hit_amplitude_std 3DMUON_3DSHOWER_trig_hit_amplitude_avg 3DMUON_3DSHOWER_trig_hit_amplitude_sum 3DMUON_trig_hit_amplitude_std 3DMUON Trig hit amplitude avg 3DMUON trig hit amplitude sum 3DSHOWER trig hit amplitude std 3DSHOWER trig hit amplitude avg 3DSHOWER Trig hit amplitude sum-10-5 10-3 10-1 101 Feature importance (mean R^2 decrease)

Colors here are not random!

They match the feature clustering

The idea:

Try to select only the most important feature in each cluster

Bundle energy reco: feature selection

I considered 4 options:

- 1. All features
- 2. Features with importance>0 & only the most important 4. Features with importance>0

one from each cluster

- 3. The most important feature only

Bundle energy reco: feature selection

I considered 4 options:

- 1. All features
- 2. Features with importance>0 & only the most important 4. Features with importance>0

one from each cluster

- 3. The most important feature only

ML reco: general overview

Hyperparameter Importances

Multiplicity reco: muon selection

We want to exclude muons, which:

- Are too far from the detector
- Have too short pathlength inside the volume of interest
- Emit too faint light (have too low Energy)
- Basically are not visible or would be poorly reconstructed

How?

- Check the JMuon* likelihood L for single muon events against:
 - distance of muon from the DET center
 (●) for vertical muons → pick an optimal volume by shrinking the can by *x* as:

 $r_{\rm can} - x$, $h_{\rm can} - x$

- muon pathlength *L* but for shrinked can
- muon energy $\rightarrow E$ cut

Summary of the selction:

Detector	Minimal E_{μ} [GeV]	d_{\max} [m]	minimal L_{μ} [m]
ARCA115	120	-	-
ARCA6	120	269.4	240
ORCA115	1	-	-
ORCA6	1	-	-

(plots in the backup)

This selection is used for further multiplicity results

Example of ARCA6, for which the effect is the most pronounced

Example of the results for ARCA6:

Analogical results obtained for ARCA115, ORCA115 and ORCA6

52

Definition of signal and background

Prompt and conv parent particles

Note: 1 parent conventional \rightarrow the muon is conventional.

The colours here only tell you if particles have short or long livetimes (if applicable).

Most muons originate from π^{\pm} and K^{\pm} , as expected.

The most important prompt mother particles for muons are light vector mesons (η , ρ , ω), not *D* mesons (also expected).

If mother is a muon or grandmother is the same nucleus as the primary, it means that there were just less interactions between shower start and muon creation.

NB: particles & antiparticles are counted together! (and so are all nuclei, including hydrogen)

100

I look at 3 things:

- 1. Muon arrival time
- 2. Muon energy share
- 3. Muon production point

Muon arrival time

arrival time: time between the first interaction of the primary and the muon crossing the can boundary

Conclusion here is that prompt is <u>not</u> <u>really evident from arrival times</u> on event-by-event basis (which is a bummer, because this could have been measurable)

Muon energy share

I use ORCA115 to boost the statistics

Prompt muons indeed tend to carry a larger portion of the total primary energy

The wiggles are coming from the contributions of different primaries

Muon production point

use ORCA115 to boost the statistics

59

Prompt muons indeed are more often produced close to the 1st interaction

Definition of signal and background

The observable distributions

Neutrino sources

L. Mohrmann, Characterizing cosmic neutrino sources – a measurement of the energy spectrum and flavor composition of the cosmic neutrino flux observed with the IceCube Neutrino Observatory, Humboldt U., Berlin (2015)

Event topologies

