Quantum Machine Learning for Earth Observation

Manish Kumar Gupta

Scientific Computing & Information Technology Group AstroCeNT—Particle Astrophysics Science and Technology Centre International Research Agenda Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences

Warszawa, 01st Feb 2023

Republic

Project and Grants

Projects

- Monte Carlo simulation for Pulse Shape Discrimination
- Quantum Machine Learning with Multispectral Data
- Semantic segmentation using Quantum Machine Learning

2 Grants

• Ongoing - ESA OSIP Grant

ASTROCENT

Section 1

Projects

Manish Kumar Gupta (AstroCeNT) QML for Earth Observation

01/02/2022 3/11

Pulse Shape Discrimination (PSD) using PyTorch

To Develope distributed Monte Carlo based estimation for DEAP-1 argon detector scintillation pulse shape in PyTorch. The analytic PSD model is from the DEAP-1 paper, arxiv:0904.2930.

Results

Pytorch based MC is 360 times faster on GPU than the ROOT implementation on CPU for 10^8 samples. The PSD model was improved by using emperical Photo Detection Probability.

Manish Kumar Gupta (AstroCeNT)

Quantum Machine Learning with Multispectral Data

Objective

To analyse if quantum machine learning is suitable for processing Multispectral Earth observation data.

Resullt

We show that there exists a dataset where quantum ML model outperforms the classical ML model in test accuracy.

Publication

"Potential of Quantum Machine Learning for Processing Multispectral Earth Observation Data , **Manish K. Gupta**, Michał Romaszewski, and Piotr Gawron" is available on preprint (https://www.techrxiv.org/doi/full/10.36227/techrxiv.21898902.v1).

ASTROCENT

Semantic segmentation using Quantum Machine Learning

Objective

Change detection consists of identifying change in pre-defined areas of interest in a multispectral image by comparing a pair of images that has been observed over a period of time by earth observation mission e.g. urban changes. We prose to use quantum machine learning for Change detection.

Result

- The pixel wise binary classification gives a balanced accuracy of \sim 76% with less than 50 parameters.
- Interpretent of the patch wise classification is in progress.

ASTROCENT

Section 2

Grants

Manish Kumar Gupta (AstroCeNT) QML for Earth Observation

01/02/2022 9/11

Ongoing - ESA Open Space Innovation Platform (OSIP) Grant

The goal of this proposal is to build a Quantum Machine Learning system for land cover classification of the Earth surface based on Sentinel-2 images. (PI: Piotr Gawron)

Figure: Spectral information processing with quantum neural networks.

Thank you for your attention!

Manish Kumar Gupta

Supta@camk.edu.pl
thtps://www.camk.edu.pl/
https://astrocent.camk.edu.pl/?team=dr-manish-gupta

