Search for Dark Matter with Liquid Argon Detector

Theo Hugues

PhD Student at AstroCeNT and APC

ASTROCENT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480

Annual Modulation and DarkSide-50

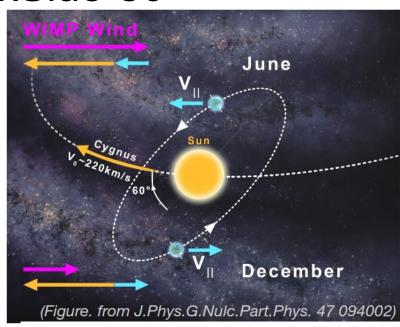
Results from other experiments

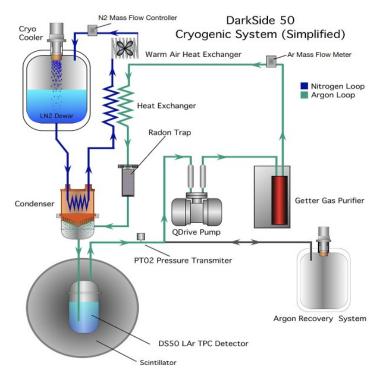
NaI(TI) detector

- DAMA/LIBRA: modulation with proper features at 13.7σCL
- ANAIS112: reject DAMA with $\approx 3\sigma$
- COSINE 100: consistent with both DAMA and the no-modulation case

LXe detector

- XENON100: reject DAMA's modulation in 2-6keV bin
- LUX: 9.2σ tension with the DAMA/LIBRA result
- XMASS: excludes the DAMA/LIBRA allowed region at $\approx 3\sigma$

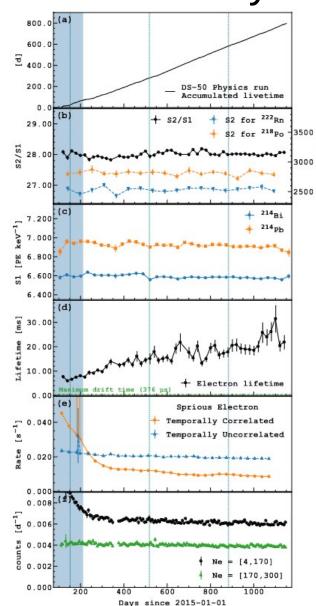

LAr detector

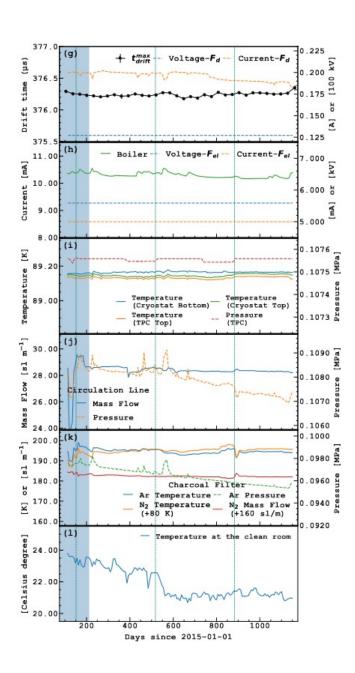

This talk (arXiv:2307.07249)
Search for dark matter annual modulation with DarkSide-50

DarkSide-50 TPC working principle:

Light collected by top and bottom Photomultiplier Tubes (PMT)

- S1 (primary scintillation), is produced in LAr due to excitation and recombination after ionization
- S2 (secondary scintillation) produced in the gas phase by drifted electrons


DarkSide-50 Long Term Stability


Stability of all 72 slow control parameters was checked:

- Quantitatively
- Lomb-Scargle periodogram
- Correlation with Data

There is <u>no significantly high</u> <u>coefficient</u> and <u>strong periodicity</u> found_for each of energy ranges

The mean number of photoelectrons per ionization electron (g2 [PE/e-]) the drift field (F_d [V/cm]) are stable within 0.5% and 0.01%

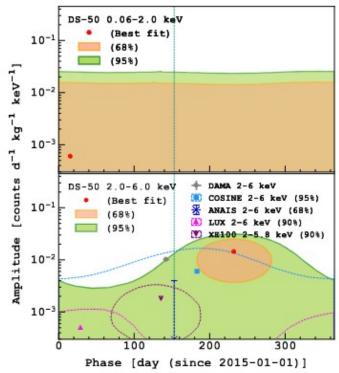
Search for Annual Modulation

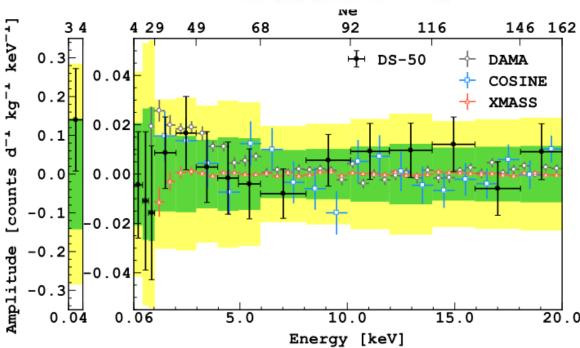
- Four radioactive isotopes decaying in 3 years are taken into account
- Dark Matter Event rate as a function of time is modeled with a cosine signal:

$$f(t) = \underbrace{A_{\chi} \cos\left(\frac{t - \phi}{\underline{T}/2\pi}\right)}_{\text{Signal Fixed to 1y}} + \underbrace{\sum_{l} \frac{A_{l}}{\tau_{l}} e^{-t/\tau_{l}}}_{\text{Including long-lived isotope}} + \underbrace{C_{,}}_{\text{Including long-lived isotope}}$$

Likelihood fit to the model with 7-d time bin:

$$\mathcal{L} = \prod_{i \in t_{\text{bins}}} \mathcal{P}\left(n_i \mid m_i(A_{\chi}, \phi, C, \Theta)\right) \times \prod_{\theta_k \in \Theta} \mathcal{G}(\theta_k \mid \theta_k^0, \Delta \theta_k).$$

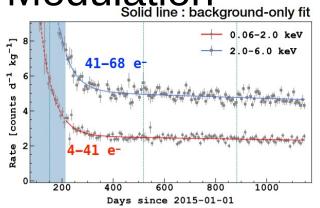

The 1D fit (uppers plots) are **consistent to the background-only model**

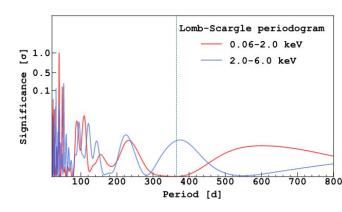

- Neither confirm nor reject the DAMA's observation

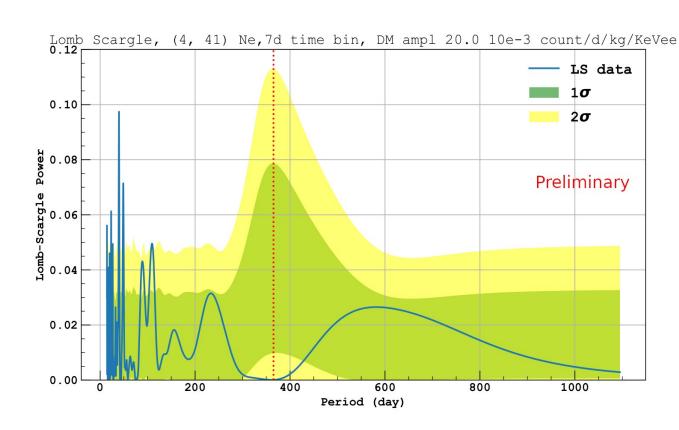
The 2D simultaneous fit (bottom plot) in both time and energy bins uses:

$$\mathcal{L} = \prod_{i \in t_{\text{bins}}} \prod_{j \in E_{\text{bins}}} \mathcal{P}\left(n_i^j \mid m_i^j(A_\chi^j, C^j, \tilde{\Theta})\right) \times \prod_{\tilde{\theta}_k \in \tilde{\Theta}} \mathcal{G}(\tilde{\theta}_k \mid \tilde{\theta}_k^0, \Delta \tilde{\theta}_k),$$

- Fixed the phase ϕ (June 2nd) and period T (1-yr)
- Amplitudes of the short-decayed component for each energy bin are correlated


Search for Annual Modulation


Lomb-Scargle algorithm is applied to look for any periodic signal


- Residuals of the backgroundonly fit are converted into the frequency space

No significant signal is observed

- Bottom plot shows a Lomb-Scargle periodogram, with Brazilian band corresponding to toy-MC datasets, showing that a median of 1 σ significance for the false alarm probability is obtained with the addition of 0.03 counts/(d kg keV)

Other activities

- DEAP Collaboration meeting, Mexico City
- DarkSide Collaboration meeting, June, LNGS, Italy
- XVIII International Conference on Topics in Astoparticle and Underground Physics (TAUP2023), Vienna Proceeding under review
- Submitting the thesis manuscript

Thank you for your attention.