Improving fundamental astrophysics with eclipsing binary stars

Nikki Miller

Araucaria Project, CAMK PAN Warsaw nmiller@camk.edu.pl | https://nikkimiller.space

Theoretical basis for the method

$$f_{0,b} = f_{0,1} + f_{0,2} = \frac{\sigma_{\text{SB}}}{4} \left[\theta_1^2 T_{\text{eff},1}^4 + \theta_2^2 T_{\text{eff},2}^4 \right]$$

Bolometric flux, f_0 for both components

- Need flux ratios in UV, visible and NIR
- Need to consider interstellar reddening
- Additional uncertainty from CALSPEC flux scale: ±1-2%

Angular diameters, $\theta = 2R\omega$

- Radius for stars in detached EBs known to ±0.5% or better
- Parallax from Gaia EDR3 ±20-30 µas

Bolometric flux for both stars

Use measurements of flux for both stars across optical range:

- ★ Flux ratios
- Catalog photometry
- Colors (e.g. Strömgren)

We need model SEDs for small-scale spectral features:

- ★ BT-Settl & BT-Settl-CIFIST
- E(B-V) estimated via EW fitting of Na DI line
 - Munari & Zwitter 1997

Distorting the flux distributions

Assume true SED = model SED x distortion:

 $\mathcal{F}_{\lambda, \mathsf{true}} = \mathcal{F}_{\lambda, \mathsf{model}} imes [1 + \Sigma c_\ell P_\ell(x)]$

where $P_{p}(x)$ are Legendre polynomials.

These "integrating functions" are normalised, and so

$$f_{\lambda,\oplus} = \sigma_{SB} \, T_{eff,1}^4 heta_1^2 \mathcal{F}_{\lambda}$$

Distortion and normalisation \Rightarrow this is not regular SED fitting

Wavelength

Model parameters M

- $T_{eff,1}; T_{eff,2}$
- $\boldsymbol{\theta}_1; \boldsymbol{\theta}_2$
- E(B-V)
- Distortion coefficients, $c_{\ell,1}$; $c_{\ell,2}$,
- Extra error on magnitudes, σ_{ext}
 - " " flux ratios, σ_{L}
 - " colors, σ_{c}

Data **D**

- $\boldsymbol{\theta}_1 \pm \boldsymbol{\sigma}_{\theta,1}; \boldsymbol{\theta}_2 \pm \boldsymbol{\sigma}_{\theta,2}$
- Magnitudes, $m_{\chi,i} \pm \sigma_{\chi,i}$
- Flux ratios, $L_{\lambda,i} \pm \sigma_{L,i}$

Meta-data / assumptions A

- Response functions, $R_{\chi}(\lambda)$
- Zero-points, $ZP_{\chi} \pm \sigma_{ZPX}$
 - $\mathcal{F}_{\lambda, model, 1}; \mathcal{F}_{\lambda, model, 2}$

Use emcee to sample P(M | D, A) = P(D | M, A) P(M)

AI Phoenicis: A well-studied F7V + K0IV binary

- Detached, totally eclipsing V~8.6 binary with 24 day orbital period
- Wealth of quality light curves throughout optical range
- Exceptionally accurate radii
 Maxted et al 2020
 Independent parallax measurement
 Gallenne et al 2019

1	Parameter		Primary	Secondary	
1	$Radius[R_{\odot}]$	0.12%	1.8036 ± 0.0022	2.9303 ± 0.0023	
	Mass [M_{\odot}]	0.06%	1.1938 ± 0.0008	1.2438 ± 0.0008	
]	logg[dex]	0.03%	4.0020 ± 0.0011	3.5981±0.0009	
1	T _{eff} [K]	0.35%	6199 ± 22	5094 ± 16	
	$L [L_{\odot}]$	1.45%	4.329 ± 0.0627	5.207 ± 0.065	

Our results for AI Phe \rightarrow <u>Miller et al 2020</u>

CPD-54 810 : A detached F5V + F6V binary

- a.k.a. ASAS J051753-5406.0
 Ratajczak et al 2021
- Detached V~10.5 binary with 26 day orbital period
- Standard catalog photometry (including TESS light curve) + additional BVRI light curves with PEST
- More of a challenge than AI Phe
 Similar spectral types
 Fewer data available

Parameter		Primary		Secondary		
$Radius\left[R_{\odot} ight]$	0.2%	1.929 ± 0	0.003	1.182	± 0.004	
Mass [M_{\odot}]	0.4%	1.309 ± 0	0.005	1.090 ± 0.003		
logg[dex]	0.02%	3.984 ± 0	0.001	4.330 ± 0.003		
T _{eff} [K]*	0.7%	6462 ±	43	6331±43		
[],]						
<u>Miller+22</u>						
Ratajczak+21 -						
_	5800 6000 6200 6400 6600 T _{eff} (K)					

Activities in 2023

Ongoing projects and publications

- Fundamental Teff for Eclipsing Binary Stars V paper analysing 3 EBs of Swift sample, in prep.
- Fundamental Teff for Eclipsing Binary Stars VI paper with remaining 3 Swift EBs, awaiting OCM data
- Benchmark spectra for benchmark EBs contributor to paper in prep + submitted observing proposals
- Fundamental Teff for SBCR eclipsing binaries in collaboration with Graczyk, Gałan
- E(B-V) calibration using Na DI lines exploratory work using spectroscopy of WDs

Collaborations and other activities

- Co-I of 2 successful ESO proposals to observe RVs of benchmark stars
- Co-author on 2 papers using CHEOPS to study eclipsing binary stars
- Contributor to Araucaria Project, OCM and PLATO "Benchmark stars" work package
- Seminar talk and visitor at CAMK Toruń
- Visitor at University of Warwick and Keele University
- Outreach activities at International Astronomical Youth Camp; President of IWA e.V and volunteer

International Astronomical Youth Camp

- Duration 3 weeks in July/August
- <mark>Age range</mark> 16 24
- Location Germany (2023, 2024)
- **# Participants** 65
- **# Nationalities** 25 30

Activities — Original <u>research</u> in small groups, practical astronomy, cultural exchange

Topics — Astrophysics, cosmology, theoretical, engineering, astrobiology, instrumentation, ...

Fee - 1090€ (2024)

