Zjazd CAMK 2024

Arkadiusz Hypki, 2024 2023.01.31

MOCCA: Global properties of tidally filling and underfilling globular star clusters with multiple stellar populations

Paramete	r	TF		TuF	
N	N _{SG} /N	$N_{SG}/N_{TOT} \approx, M \uparrow_s, t_{diss} \uparrow_s$		$N_{SG}/N_{TOT} \approx, M \uparrow, t_{diss} \uparrow_s$	
rg	N _{SG} /N	$N_{SG}/N_{TOT} \approx, M \uparrow_s, t_{diss} \uparrow$		$N_{SG}/N_{TOT} \approx$, $M \uparrow_s$, $t_{diss} \approx$	
fb	N _{SG} /N ₁	$N_{SG}/N_{TOT}\uparrow_w, M\uparrow_w, t_{diss}\downarrow_s$		$N_{SG}/N_{TOT} \approx$, $M \approx$, $t_{diss} \approx$	
M _{max}	N _{SG} /N	$N_{SG}/N_{TOT} \downarrow, M \approx, t_{diss} \uparrow$		$N_{SG}/N_{TOT} \approx$, $M \approx$, $t_{diss} \approx$	
conc _{pop}	N _{SG} /N	$N_{SG}/N_{TOT} \downarrow, M \approx, t_{diss} \approx$		$N_{SG}/N_{TOT} \approx$, $M \uparrow_w$, $t_{diss} \approx$	
$W_{0,FG}$	N _{SG} /N	$N_{SG}/N_{TOT} \downarrow_s, M \uparrow_s, t_{diss} \uparrow_s$		$N_{SG}/N_{TOT} \approx$, $M \approx$, $t_{diss} \approx$	
rhFG				$N_{SG}/N_{TOT} \uparrow, M \downarrow, t_{diss} \approx$	
Parameter		TF		TuF	
	t _{diss} ↑	$ \begin{array}{c} N\uparrow_{s}, r_{g}\uparrow, W_{0,FG}\uparrow_{s}, M_{max}\uparrow \\ fb\uparrow_{w} \end{array} $		$N\uparrow_s$	
Ng	$_{\rm G}/N_{\rm TOT}$ \uparrow			r _{hFG} ↑	
	M ↑	$N \uparrow_s, r_g \uparrow_s, fb \uparrow, W_{0,FG} \uparrow_s$		$N \uparrow, r_g \uparrow_s$	

 $\label{eq:Figure 1: Summary table showing how} one can change <math display="inline">t_{\rm diss},$ total mass, and $N_{\rm SG}/N_{\rm TOT}$ ratios of GCs.

- MOCCA: Global properties of tidally filling and underfilling globular star clusters with multiple stellar populations, Hypki et al. **sent to A&A**
- we find that in models starting with the FG tidally filling, $N_{\rm SG}/N_{\rm TOT}$ can undergo a significant evolution reaching higher values falling in the range of those observed in Galactic globular clusters
- models with a FG initially tidally underfilling, on the other hand, do not lose a significant number of stars and retain values of $\rm N_{SG}/\rm N_{TOT}$ similar to the initial ones.

New Parameters for Star Cluster Dynamics: the role of clusters' initial conditions

Figure 2: Logarithm of A_5 plotted against the logarithm of t_{rc} which shows division of GCs into different dynamical stages.

- B. Bhat, B. Lanzoni, E. Vesperini, F. R. Ferraro, F. Aros, A. Askar, A. Hypki, sent to ApJ journal
- data taken from MOCCA snapshots
- three nCRD parameters A_5 , P_5 and $S_{2.5}$ are powerful diagnostics of the stage of internal dynamical evolution reached by star clusters

Formation of an extremely massive star in realistic million-body simulation

Figure 3: VMS formation done with MOCCA code.

- Kamlah A. et al, almost finished
- Rapid formation of a massive black hole of $> 27000 \ M_{\odot}$ from the core-collapse of a very massive star (VMS) produced by thousands of stellar mergers in direct N-body simulations of dense star clusters
- seed for IMBH formation
- MOCCA as an independent check for NBODY results

BEANS code

Figure 4: http://BEANScode.net

- interactive, distributed data analysis
- web-based
- open source
- data analysis in a form of notebooks (like Jupyter)
- Apache Pig (Apache Hadoop)
- connectors to MOCCA, NBODY codes
- Python, AWK, Gaia plugins
- access to all simulations from all different mocca-survey from BEANS

Future plans

Future plans: MOCCA + TSUNAMI

Figure 5: MOCCA+TSUNAMI, n=50k, fb=0.95, rg=20 kpc, rh=1pc, w0=9, GW recoil kicks enabled, plots shows number of exchanges.

MOCCA + TSUNAMI (Trani et al. 2022):

- full integration with Tsunami dynamical interactions between binary-single, binary-binary, or any other hierarchy)
- dynamical tides
- post-Newtonian terms
- \rightarrow How IMBH formation would be changed?

Future plans: hierarchical systems

- hierarchical system already implemented in MOCCA
- dynamical formation of hierarchical systems
- influence of Zeipel-Lidov-Kozai mechanism on BHs formation and evolution

Figure 6: Six-star system TYC 7037-89-1, Credits: NASA

Conclusions

Figure 7: MOCCA, NCAC, NCN

- 2 papers sent
- co-Author in 2 more paper (close to publication) on VMS, and on WD-WD binaries
- Hypki et al. 2024 "MOCCA: Dynamical blue stragglers excess after core collapse" close to submission
- 2 talks on 2 conferences: MODEST, and "Two in a million -The interplay between binaries and star clusters"

http://MOCCAcode.net — Arkadiusz Hypki — ahypki@camk.edu.pl

