

Rodolfo Smiljanic

CAMK/PAN Warsaw

CAMK Annual Meeting, 31 January – 02 February (2024)

Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas

CUBES

Cassegrain U-Band Efficient Spectrograph

CAMK/PAN Annual Meeting, 2024

31/01/2024

What is CUBES?

CAMK

- Cassegrain U-Band Efficient Spectrograph (Cristiani et al. 2022a,b; Zanutta et al. 2022)
- To be installed at the 8m ESO's VLT (by 2027)
- **Consortium:** Italy (leader; PI S. Covino), Germany, UK, Brazil, Poland
- Ground near-UV (300-405 nm)
- High-efficiency
- Two resolutions (R~6000, R~23 000) with two image slicers

Science with CUBES

- See <u>CUBES special edition</u> in Experimental Astronomy (17 articles)
- Summary in Evans et al. (2023): Solar system, Galactic, extragalactic and transients
- Several with dedicated simulations
- Reach sources up to 3 mag fainter than currently possible at the near UV

 Table 1
 Summary of high-level science cases developed during the CUBES Phase A study. Entries in the third column refer to the expanded articles presented elsewhere in this Special Issue (SI)

Field	Science case	SI Contrib.
Solar System	S1: Cometary Science	[3]
	S2: Icy Satellites	
Galactic	G1: Accretion, winds & outflows in YSOs	[4]
	G2: Exo-planet composition	
	G3: Stellar astrophysics & exoplanets	
	G4: Beryllium in metal-poor stars and stellar clusters	[5, 6]
	G5: Lithium production in novae	
	G6: Metal-poor stars & light elements	[7, 8]
	G7: Neutron-capture elements	[9]
	G8: Precise metallicities of metal-poor pulsators	
	G9: Horizontal branch stars in Galactic GCs	
	G10: Early-type companions in binary Cepheids	
	G11: Extragalactic massive stars	[10]
Extragalactic	E1: Primordial deuterium abundance	
	E2: Missing baryonic mass in the high-z CGM	[11]
	E3: Cold gas at high redshift	[12]
	E4: Reionisation	
Transients	T1: GRBs	
	T2: Kilonovae	
	T3: Superluminous supernovae	

(Evans et al. 2023)

Project status

- Phase C (*Final Design*) started in 2023 (kick-off on 26th of January)
 - > Fiber-link to UVES was dropped
 - Imaging mode: ADC added to the A&G path
 - Long Lead Items Review completed (Final requirements for items that have long manufacturing time; > 18 months)
 - > 1 million € paid by ESO to INAF (orders for CCDs, image slicers, optics soon)
- Final Design Review (FDR) by October 2024

Key Milestones	Contractual Completion Date
KM.0 – Entry into force of the Consortium Agreement	то
KM.1 – Kick-off Meeting	T0 + 1 month
KM.2 – Delivery of Prototype (grating)	T0 + 10 monthe
KM.3 – Preliminary Design Review (PDR)	T0 + 11 months
KM.4 – Long Lead Items Review	
KM.5 – Final Design Review (FDR)	T0 + 25 months
KM.P – Procured equipment delivered at the Consortium's premises and accepted by the Consortium	T0 + 40 months
KM.6 – Intermediate Milestone (Assembly Readiness Review)	T0 + 45 months
KM.7 – Test Readiness Review (TRR)	T0 + 57 months
KM.8 – Provisional Acceptance Europe (PAE)	T0 + 63 months
KM.9 – Intend to Accept and PTO of the Instrument	T0 + 65 months
KM.10 – Provisional Acceptance Chile (PAC)	T0 + 77 months

Polish participation

- Contribution at **5.7%** of staff effort and cost
- R. Smiljanic: co-PI at Executive Board
- **OPUS/LAP NCN grant approved** (collaboration with Heidelberg University):
 - Purchase of Acquisition & Guiding camera
 - Characterization of A&G (with Heidelberg)
 - Development of imaging mode simulator & imaging mode data reduction SW
 - One post-doc to work on science simulations
 - Simulate spectrophotometry of metal-poor stars with CUBES
- Participation in the 90 GTO nights to be awarded to the consortium (span 3-5 years)

ELSE-I 1k x 1k BI UV3 – Axiom Optics:

Wide-field Spectroscopic Telescope

What is the WST

https://www.wstelescope.com/

- Wide-field Spectroscopic Telescope (WST)
- A 10-m class ground-based telescope dedicated to multi-object spectroscopy
 - Project for the future: > 2035
- In October 2021, a consortium of 18 Institutes was formed (from Europe and Australia, including also ESO)
- Horizon Europe proposal in April 2022:
 - Three-years study to prepare a conceptual design
 - Proposal was formally approved but not funded...
- Now preparing for new call: deadline March 12, 2024

Which of these possible facilities do your future research objectives require?

(Merand et al. 2021)

2023 baseline

Preliminary TLR

Telescope Aperture	12 m, seeing limited		
Telescope FoV	2.5 - 5 deg ²		
MOS LR Multiplex	20,000		
MOS LR Resolution	2,000-7,000		
MOS LR Spec Range	370 (350) - 970 nm	IR ext a late	tension to r stage
MOS HR Multiplex	2,000		
MOS HR Resolution	20,000-40,000		
MOS HR Spec Range	3-4 regions in 350-970) nm	
IFS FoV	3x3 arcmin ²		
IFS Resolution	3,000-5,000		
IFS Spec Range	370-970 nm		
IFS Mosaic	9x9 arcmin ²		
MOS & IFS simultane			

Observatory concept

- VLT style dome: 50m tall, 40m diameter
- The IFS units on the ground floor; highresolution spectrographs on the 1st floor; low-resolution spectrographs on the 2nd floor (or on a Nasmyth platform)
- Site selection (around Paranal): visits to the La Montura and La Chira; past seeing statistics of Ventarrones
- Sustainability strategy being developed
- 32m ESO ELT is now > 50% complete
 - ESO will start in 2024 studies to define the next big facility

Observatory concept

Science with WST

- Participation in the Science Team is welcome, regardless of affiliation
- Science White Paper: arXiv by end of February
- What is the transformational science that can only be addressed by a 12-metre telescope fully dedicated to multi-object spectroscopy in >2035?

WP2 - Science

- 2.1 Cosmology
- 2.2 Extragalactic
- 2.3 Galactic
- 2.4 Time-domain

Exoplanet, Stellar and Galactic Science

- Three main topics:
 - Origins of the elements
 - Origins of the Milky Way system
 - Origins of stars and planets
- Except for Gaia-ESO and PFS @ Subaru, all surveys use 4m telescopes
- Except for Gaia-ESO (~7000 stars) and GALAH, all survey spectra with R < 20k
- Reach fainter and more distant sources
- Explore chemical elements missed by other surveys
- Reach higher precision in the abundances

Thank you for your attention

The Gaia Mission

CAMK/PAN Annual Meeting, 31 January – 02 February 2024

Gaia Science Team

sa CAI

- Nominated to join the Gaia Science Team (GST) from November 2022 (for 3 years, renewable)
- Milestones:
 - Gaia Focused Product Release: October 2023
 - Gaia end of life: early 2025
 - Gaia DR4 (based on 66 months of data) not before the end of 2025
 - Gaia DR5 (all data) not before end of 2030

Gaia FPR

- Astrometry and photometry from engineering images taken in the Omega Centauri region (+ 526 000 new sources)
- 2) 4.8 million sources around 3.8 million quasar candidates: 381 gravitational lens candidates
- 3) 9600 Long Period Variables with radial velocity time series
- 4) Detection of diffuse interstellar bands in 235 000 sources from stacked spectra
- 5) Orbits for 156 000 solar system objects + epoch astrometry based on 66 months of data

(New sources in the core of ω Cen)

Thank you for your attention