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Plan
1. Structure of galaxies: haloes and disks, circular velocities, 

NFW profile, exponential disk, Sersic profile

2. The Milky Way and galaxies of the Local Group

3. Orbits of stars in different potentials

4. Distribution functions, Jeans modeling, orbit-superposition
models

5. Bars in galaxies: formation, evolution, orbital structure, 
dependence on environment

6. Spiral structure: geometry of spiral arms, formation scenarios

7. Interactions: tidal evolution and mergers, properties of merger
remnants

8. Galaxy formation in cosmological context, cold and hot dark
matter scenarios, top hat model, problems of theory on small 
scales 2



Types of orbits

• What kind of orbits are possible in galactic systems
with different degrees of symmetry?

• Analytic results can be obtained for simpler
potentials

• In general orbits become more complicated with 
decreasing symmetry of the potential

• We will assume that the gravitational fields of 
galaxies are smooth, neglecting perturbations due to 
stars, globular clusters or molecular clouds
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Spherical potentials

• In a spherical potential the acceleration is directed
towards the center of the mass distribution, therefore

• Thus the angular momentum is conserved

• And the star moves in a plane

0
2

2

=+=
















→
→

→→→
→

dt

rd
r

dt

rd

dt

rd

dt

rd
r

dt

d

constL
dt

rd
r ==

→
→

→

4



Equations of motion

• Since the motion is in the plane, we can use planar
cylindrical coordinates (r, ψ) to describe it

• Equations of motion are given by

• The second equation is just the angular momentum
conservation L=const
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The energy

• The energy of the orbit in a spherical potential is

or

• The star will stop when dr/dt=0 and this equation
usually has two solutions: the apocenter and the 
pericenter distance
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The effective potential

• The star moves as if in an effective potential

• The motion is between

two radii defined by

• The circular orbit corresponds to the minimum of the 
effective potential
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Types of orbits

• Solutions of the equations of motion can be in the 
form of unbound orbits (r can be infinite) 

• or bound orbits: r oscillates between finite limits, 
pericenter and apocenter

• The difference between the values of apo- and 
pericenter is the measure of eccentricity

• More eccentric orbits are called radial, more
circular orbits are called tangential

• Distribution of orbits is important in modelling of 
galaxies
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Periods

• The radial period of the orbit is the time required for 
the star to travel from apocenter to pericenter and back

• The azimuthal period is the time required to cover the 
full angle of 2π

• Δψ is the angle covered during the radial period
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Closed orbits

• There are only two potentials in which all bound orbits
are closed i.e. Δψ/2π is a rational number

• Spherical harmonic oscillator

(generated by a uniform sphere of matter)

• Kepler potential
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Orbits in galaxies

• Orbits of stars in a typical (spherical) galaxy can be 
understood as an intermediate case between the two
types of closed orbits

• Typical galactic potentials are more extended than
point masses and less extended than homogeneous
spheres

• Since for a Keplerian orbit the radial period 
corresponds to Δψ=2π and for homogeneous sphere to 
Δψ=π, in real galaxies

π < Δψ < 2π
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Angular momentum

• Radial orbits have low angular momentum so
Δψ → π for L → 0

• Circular orbits have large angular momentum so

Δψ → 2π for L → Lmax

• This result is quite general, can be problematic only
for some singular potentials
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Orbit around Milky Way

• Typical orbit of a dwarf
galaxy, a satellite of the 
Milky Way

• Time required for one 
radial orbit is significantly
smaller than needed for 
one angular orbit

• The angle covered in one 
radial period is

Δψ ~ 3π/2
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Orbits around Milky Way

Orbit • Orbital period given is
usually the radial period

• For more eccentric orbits
Δψ is lower
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Distribution 
of orbits

Via Lactea simulation
Diemand et al. 2007
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Constants and integrals of motion

• Any orbit can be described as a path in 6D space of 
position and velocity (phase space)

• A constant of motion is a function of phase space
coordinates and time that is constant along the orbit

• An integral of motion is a function of phase space
coordinates only that is constant along the orbit
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Integrals of motion

• Orbits can have 0-5 integrals of motion

• In any static potential Φ(x) the hamiltonian is the 
integral of motion

• In an axisymmetric potential Φ(R,z,t) z-component of 
angular momentum is an integral

• In a spherical potential Φ(r,t) three components of 
angular momentum are integrals of motion

• More complicated integrals may exist

• The integrals reduce the dimensionality of phase
space
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Axisymmetric potentials

• A cylindrical coordinate system (R,z,φ) is useful in 
this case, with z axis aligned with the symmetry axis
of the galaxy

• Orbits in the equatorial plane are the same as in the 
spherical potential

• Due to conservation of the z-component of the 
angular momentum, description of orbits can be 
reduced to 2D problem in R,z (meridional plane)

• The potential is of the form Φ(R,z) 
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Equations of motion

The effective potential
defines the zero-
velocity curve, 

the orbit satisfies

E >= Φeff

Examples of 

contours of 

equal

effective

potential
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Examples of orbits

In general, the orbits must be integrated numerically, 

even for rather simple potentials
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Nearly circular orbits

• The minimum of the effective potential corresponds to 
the circular orbit 

• For nearly circular orbits we can expand the effective
potential around the guiding center Rg which is the 
radius of the circular orbit

• Then x=R-Rg is the new radial coordinate
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Epicycle approximation

• The equations of motion then become

• So x and z evolve like displacements of two harmonic
oscillators with frequencies κ and ν,

κ – epicycle or radial frequency

ν – vertical frequency
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Radial frequency

• The radial frequency can be expressed in terms of the 
circular frequency

• Near the center of the galaxy, where circular speed vc

~ R, Ω ~ vc /R ~ const and κ = 2 Ω

• In the outer parts Ω declines with radius, at most like
in the Kepler case Ω ~ R-3/2 and then κ = Ω, so in 
general Ω < κ < 2 Ω
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Oort constants

The values of the constants can be measured directly
from the kinematics of stars in the solar
neighbourhood, the measurements give:

κ0 / Ω0 = 1.35

so the Sun makes 1.35 oscillations in the radial
direction when it goes around galactic center
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Flat, non-axisymmetric potentials

• For example: a bar in a thin disk

• Two types of orbits are essentially possible:

box orbits

(combination of two harmonic

oscillators, go through the center)

loop orbits

(circulating in a fixed direction

but oscillating in radius, never go 

through the center)
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Different shapes

loop

box
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Parenting

• Special among the loop and box orbits
are the closed orbits which are stable

• A closed loop orbit is the parent of the 
family of all loop orbits

• A closed long-axis orbit is the parent of 
box orbits

• Any member of a given family of orbits
may be viewed as performing stable
oscillations about the parent closed orbit
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The limit of axisymmetry

• In the 2D axisymmetric potential there are only two
stable closed orbits for each energy: clockwise and 
anti-clockwise circular orbits

• All other orbits belong to families parented by these
two orbits

• The epicycle frequency is the frequency of small 
oscillations around the parent closed orbit
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From disk to bar

• The idea of stable closed orbits allows us to study the 
evolution of orbital structure when potential changes

• For disks only loop orbits are present

• When the bar appears, long-axis orbit becomes stable and 
parents the box orbits

+
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Triaxial potentials

• Most elliptical galaxies can be 
described as triaxial

• Additional complication is
introduced by the presence of a 
massive black hole

• The simplest model is the so-
called perfect ellipsoid (de 
Zeeuw 1985)

30
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Four families of orbits

box

outer long-

axis tube

(x-tube)

short-axis tube

(z-tube)

inner long

axis tube

(x-tube) 
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Orbits in simulated galaxies

• In simulated galaxies we 
can use the full 3D 
information of the motions
of the stars to classify the 
orbits

• The variety of orbits is
richer than the four classes
of regular (periodic) orbits

• Fraction of different orbits
as a function of radius can
be measured

Rottgers et al. 2014
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Orbits in simulated galaxies

Rottgers et al. 2014
Galaxies of classes A-F have

different formation history 33



Line-of-sight
kinematics

z-tubes dominate boxes dominate

• Only projections

along one direction

are accessible to 

observation

• We must deduce the 

orbital composition

from these limited

data

Rottgers et al. 2014
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Orbits as probes of potential

Stellar streams
originating from the 
tidally stripped dwarf
galaxies or globular
clusters can be used to 
study the potential of 
their hosts

NGC 5907 35



NGC 5907

Martinez-Delgado et al. 2008
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Shapes of dark matter haloes

• Since the dark matter haloes are
the most massive components of 
galaxies they influence the orbits
most

• The expected shapes of dark
matter haloes from cosmological
simulations are significantly
different from spherical

• The shapes of the haloes can be 
approximated as triaxial ellipsoids

a

c

b

a – longest axis

b – intermediate

axis

c – shortest axis
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Shapes of dark haloes

The distribution of 

axis ratio c/a 

measured at 0.4 rvir for 

~4000 haloes of mass 

1011 -1014 M


identified in a 

simulation of structure

formation in a box of 

size ~50 Mpc

Bailin & Steinmetz 2005
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Triaxiality

A good measure of 
shape is the triaxiality
parameter

0 < T < 1/3     oblate

1/3 < T < 2/3  triaxial

2/3 < T < 1     prolate

Bailin & Steinmetz 2005
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triaxial
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The shape depends on radius
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Axis ratios

• The distribution of halo 
properties in the c/a-b/a 
plane

• Most haloes are triaxial
with c/a~0.6 and b/a~0.8

• There are more prolate than
oblate haloes

• There is some dependence
on halo mass (massive
haloes are more flattened)

Bailin & Steinmetz 2005
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Dark halo of the Milky Way

• An example of a Milky
Way-like halo formed
in simulations

• The halo is strongly
non-spherical

• The shape depends on 
the radius where we 
measure it

Vera-Ciro et al. 2011
41



Dependence of 
shape on radius

• The axis ratios grow
with radius

• The Milky Way halo is
more spherical in the 
outer parts

• The same is true for 
different realizations of 
Milky Way halo

Vera-Ciro et al. 2011
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Dependence of shape on mass

• The axis ratios decrease
with mass

• Less massive haloes are
more spherical

• The dependence on 
mass is extended to 
lower masses

• The effect is similar in 
all environments

Vera-Ciro et al. 2014 43



Sagittarius stream

The best studied example is the modelling of the Sagittarius
stream
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A model for the Milky Way

• The MW model is composed of a Miyamoto-Nagai disk, 
a Hernquist bulge and a logarithmic dark matter halo

• The halo is described by an ellipsoid that can be rotated
about the MW z-axis
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Miyamoto-Nagai models

Miyamoto & Nagai 1975

b/a=0.2

b/a=1

b/a=5

Potential-density pair in 

analytic form

b → 0 thin disk

a → 0 Plummer model
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Model for Sgr stream

• N-body model vs data 
(black points)

• Debris from the last 3 
Gyr shown

• Black line shows the 
trajectory of Sgr core

• Best fit found for 
non-spherical halo

Law & Majewski 2010
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Oblate dark matter halo

• The best-fitting dark
halo of the Milky Way
is flattened

• The shape can be 
approximated by an
almost oblate ellipsoid
with c/a=0.72 and 
b/a=0.99

Law & Majewski 2010

• The minor axis of the halo lies in the 

plane of the Milky Way disk

48



Newer data

The model of Law & Majewski does not match the new
data

Belokurov et al. 2014
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Orbits of dwarfs in the Local Group

• Determination of orbits of dwarfs in the Local 
Group is difficult because we need to measure the 
proper motion

• Proper motion measurements have been done for a 
many dwarfs including classical and ultra-faint
objects

• This was possible

due to Gaia satellite

50
www.esa.int/Science_Exploration/Space_Science/Gaia



Orbits of dwarfs

Battaglia et al. 2022

Orbital parameters
were obtained by 
integration of orbits in 
an assumed potential
of the Milky Way
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Collisionless systems

• We will assume that galaxies are composed of N 
identical point masses

• Stellar systems can be approximated as 
collisionless: the stars move as if the system’s mass 
was smoothly distributed in space rather than in 
form of point-like masses

• Rather than following the orbits of all stars we will
describe the system in terms of the distribution
function
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The distribution function

• The distribution function (DF) is the function f such

that

is the probability that at time t a randomly 

chosen star has phase-space coordinates in    

the given range

• The DF is normalized to unity via the integral over

the whole phase space

53



Relation to observables

• The probability of finding a star at x regardless of 
velocity is

• If we multiply by the total number of stars N, we will
obtain the spacial number density of stars

• If we normalize the distribution function by the total
mass M or luminosity L, the density will describe the 
mass density or luminosity density
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Relation to observables

• The probability distribution of stellar velocities at x is
given by

• The mean velocity of stars at x is

• The velocity dispersion tensor is
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The velocity ellipsoid

• The tensor is symmetric so can be diagonalized to the 
form

• The velocity ellipsoid is the ellipsoid with principal 
axes oriented along the diagonalizing coordinates and 
semi-axis lengths given by a=σ11, b=σ22 and c=σ33
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Boltzmann equation

• The requirement that the probability must be 
conserved leads to an analog of the continuity
equation which in the Carthesian coordinates can be 
written in the form

• Another way to express the meaning of this equation
is to say that the flow of the probability fluid through
phase space is incompressible
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Integrals of motion

• The integral of motion satisfies the following condition
along the orbit

• This equation can be rewritten as

• or

• So the condition for I to be an integral is the same as to 
be the steady-state solution of the Boltzman equation
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Jeans theorem

• Any steady-state solution of the collisionless
Boltzmann equation depends on the phase-space 
coordinates only through integrals of motion in the 
given potential

• Any function of the integrals yields a steady-state 
solution of the collisionless Boltzmann equation

The second part of the theorem is especially useful
because it allows us to construct DFs
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DFs depending on energy
• In any steady-state potential the Hamiltonian H is an

integral of motion

• We may construct distributions functions as any non-
negative functions of H

• DFs of this form are called ergodic

• An isolated system with ergodic DF is spherical

• For potentials that are constant in an inertial frame

• In this case the mean velocity vanishes everywhere
because the integrand is an odd function of velocity
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DFs depending on energy

• In addition to the absence of streaming motions, the 
velocity dispersion tensor is isotropic

with

• So the velocity ellipsoid is a sphere of radius σ

• Every system with an ergodic DF is isotropic (has
isotropic velocity dispersion tensor)
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DFs depending on E and L

• In a spherical potential the angular momentum vector is
also an integral of motion

• Usually DFs for spherical systems are constructed using
the energy and the value of L: f = f(H, L)

• It is then useful to define the radial velocity (parallel to the 
radial direction) vr and the tangential velocity
(perpendicular) vt

2 = vθ
2 + vϕ

2

• Then the angular momentum L=r vt and H=(vr
2+vt

2)/2 +
Φ(r)

• The mean velocities vanish but the system does not have
to be isotropic: ϭθ

2 = ϭϕ
2 ≠ ϭr

2 because the DF  depends
differently on vr and vt
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DFs depending on E and Lz

• In an axisymmetric potential the angular momentum
component Lz is an integral of motion

• DFs od such systems are constructed using the energy
and Lz : f = f(H, Lz)

• In cylindrical coordinates Lz =R vϕ and 

H=(vR
2+vz

2+vϕ
2)/2 + Φ

• The mean velocities along R and z vanish, but are non-
zero along ϕ

• The system is in general not isotropic ϭR
2=ϭz

2≠ϭϕ
2

• Models with ϭR
2 = ϭz

2 = ϭϕ
2 are called isotropic rotators
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Eddington’s formula
• For a spherical stellar system with a known potential it is 

possible to derive a unique ergodic DF that depends only 
on energy

with the relative energy and potential

• Given a spherical density distribution, we can recover an 
ergodic DF that generates a model with the given density

• There is no guaratee that f will be physical, f ≥ 0
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Examples of DFs

• Analytic expressions for DFs generated by some
popular density profiles are available

• One example is the DF for the Hernquist profile
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Examples of DFs

• For NFW profile no 
analytical formula is
available and the DF 
has to be calculated
numerically

• The dependence on 
energy is similar as for 
other well-known
density profiles

66
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Models with constant anisotropy

• Among models dependent on E and L a particularly
simple and useful case is that with constant anisotropy

• The anisotropy parameter β =1- (ϭθ
2 + ϭϕ

2)/ (2 ϭr
2) 

describes the type of stellar orbits in the system:

β =0   – isotropic orbits

β =1 – radial orbits (ϭθ = ϭϕ = 0)

β = -∞ – circular orbits (ϭr = 0)
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Osipkov-Merritt models

• In simulated objects like galaxies and galaxy clusters
we often find the anisotropy to increase with radius

• A model that reproduces this trend to some extent is
the Osipkov-Merritt model with anisotropy

where ra is the anisotropy radius

• The DF of this model depends on energy and angular
momentum only via the variable
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Anisotropy profiles for DM haloes

• On average, the simulated

DM haloes have increasing

anisotropy profiles, isotropic

in the center, radially biased

outside

• Some haloes show decreasing profiles

69Wojtak et al. 2008



More general DFs

• A more general formula that encompasses all these
possibilities is

• The angular momentum part is given by

• The anisotropy parameter has the limiting values β0

in the center and β∞ at infinity
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Spherical systems

• At first approximation many stellar systems may be 
treated as spherical

• These include: globular clusters, dwarf spheroidals, 
elliptical galaxies and galaxy clusters

• The models can be applied to systems of mass in the 
range 105 -1015 M



71

dSph Leo IGC 47 Tuc Galaxy M87 A3571



Globular clusters

• Most of them are spherical to a very good
approximation so spherical models are especially
well justified and not subject to any biases

• They are relatively simple to model because they
are not expected to contain dark matter so mass-
follows-light models can be used

• Many of them can be found in the Milky Way, are
relatively close (even at a few kpc) so the spectra 
and then the velocities of the stars are easy to 
measure
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Dwarf spheroidals

• Less spherical than globular clusters with typical
ellipticities of 0.3

• More distant, typically at 20-200 kpc away, so
measurements of velocities are more challenging

• Believed to contain a lot of dark matter

• Properties of dark matter cause substantial
uncertainties in the modelling and more parameters
need to be constrained
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Elliptical galaxies

• Planetary nebulae or globular clusters can be used
as tracers of the potential

• The tracers are usually scarce at distances larger
than the effective radius so it is difficult to constrain
the distribution of dark matter

• Many probably contain black holes that influence 
the velocity distribution of the stars and make the 
modelling more complicated
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Galaxy clusters

• Biggest gravitationally bound structures: may not yet be 
in equilibrium and may be affected by infalling material

• Departures from sphericity are difficult to measure

• Believed to be strongly dominated by dark matter and 
the distribution of galaxies is believed to trace the mass

• Different populations of galaxies are present, ellipticals
are more reliable for modelling as they probably spent
more time in the cluster while spirals may be infalling
for the first time
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How to proceed without DF

• Comparisons between theoretical models and 
observational data are usually performed in terms of 
velocity moments, such as mean rotation velocity
and velocity dispersion

• Calculating these moments from a known DF is easy

• However, finding an appropriate DF is not 
straightforward

• Even if a DF is found it may not be unique

• It is therefore useful to infer moments without
recovering the actual DF
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Jeans equation
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Observed velocity dispersion

ϭlos – line-of-sight velocity dispersion

I (R) – surface distribution of the stars
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Solutions of the Jeans equation

• For an isotropic system the solution is very simple

• The line-of-sight velocity dispersion is then

• For some density/mass distributions this can even be 

calculated analytically
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Solutions of the Jeans equation

• Another interesting case is the class of systems with a 

distribution function f = f(E) L-2β where the anisotropy

parameter is constant

• For example, the solution for the NFW model is then

with s=r/rv, c is the concentration parameter and Vv

is the circular velocity at the virial radius
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Radial velocity dispersion

81

Steeper density profiles for a fixed β have a similar

effect as more radial orbits for a fixed profile  



LOS velocity dispersion

82

The same fundamental degeneracy is present for los 

dispersion



Mass-anisotropy degeneracy

β = 0,   c = 9.2

β = –1, c = 13.6

β = –2, c = 15.7

Different combinations

of anisotropy and 

concentration reproduce

the data equally well

Abell galaxy cluster
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Examples of data sets

• Kinematic data sets

for dSph galaxies

from Walker et al. 

(2008)

• The data include the 

positions of stars and 

their LOS velocities

• From these we 

calculate the velocity

dispersion profiles

84



Measuring velocity dispersion

• The velocity dispersion ϭlos for a sample of n stars is
measured using the estimator

• The data can be binned to produce the velocity
dispersion profile as a function of the projected
radius R

• The measurements are assigned sampling errors

2/1

1

2)(
1

1
  








−

−
= 

=

n

i

i vv
n

s 
=

=
n

i

iv
n

v
1

1
  where

)1(2
  

−
=

n

s
s



Fitting the dispersion profiles

• The dispersion

profiles are fitted

with the solutions of 

the Jeans equation

• If we assume that

mass follows light

we may find the 

best-fitting

parameters such as 

M/L and β

86
Łokas 2009



Fitted parameters

dSph

galaxy

Mass 

[107 M


]

β M/LV

[M


/L


]

Carina 2.3 ± 0.2 -0.04 67 ± 31

Fornax 15.7 ± 0.7 -0.33 8.8 ± 3.8

Sculptor 3.1 ± 0.2 -0.09 15.3 ± 6.9

Sextans 4.0 ± 0.6 0.22 91 ± 49
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Problems in modelling dSphs

• dSphs may be affected by tidal forces
from the Milky Way

• If they formed from disks they may be 
significantly non-spherical

• They may have some remnant rotation

• The first two effects may bias the 
results toward higher masses and/or
tangential orbits

88



Schwarzschild's method

• Schwarzschild's approach is intermediate between
the analytic techniques based on DFs and N-body 
simulations which follow the evolution of 
individual particles (particle-based)

• Schwarzschild's method combines orbits to create a 
stellar system and hence is called an orbit-based 
method

89



Orbit-based models

Cappellari 2014
90

We create a library of orbits and find their relative

contributions to the observed density and velocity

distribution of stars in a galaxy



Contribution of different orbits

91

• Radial orbits contribute to 

the velocity distribution in a 

different way than circular

orbits

• This allows us to construct

models that reproduce the 

data best

• The models are not 

necessarily unique

Rix et al. 1997

radial orbit

circular orbit
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The kinematics is fitted by reproducing the velocity

distribution of stars in terms of different velocity moments


	Slajd 1: GALAXIES Lecture 3-4
	Slajd 2: Plan
	Slajd 3: Types of orbits
	Slajd 4: Spherical potentials
	Slajd 5: Equations of motion
	Slajd 6: The energy
	Slajd 7: The effective potential
	Slajd 8: Types of orbits
	Slajd 9: Periods
	Slajd 10: Closed orbits
	Slajd 11: Orbits in galaxies
	Slajd 12: Angular momentum
	Slajd 13: Orbit around Milky Way
	Slajd 14: Orbits around Milky Way
	Slajd 15: Distribution  of orbits
	Slajd 16: Constants and integrals of motion
	Slajd 17: Integrals of motion
	Slajd 18: Axisymmetric potentials
	Slajd 19: Equations of motion
	Slajd 20: Examples of orbits
	Slajd 21: Nearly circular orbits
	Slajd 22: Epicycle approximation
	Slajd 23: Radial frequency
	Slajd 24: Oort constants
	Slajd 25: Flat, non-axisymmetric potentials
	Slajd 26: Different shapes
	Slajd 27: Parenting
	Slajd 28: The limit of axisymmetry
	Slajd 29: From disk to bar
	Slajd 30: Triaxial potentials
	Slajd 31: Four families of orbits
	Slajd 32: Orbits in simulated galaxies
	Slajd 33: Orbits in simulated galaxies
	Slajd 34: Line-of-sight  kinematics
	Slajd 35: Orbits as probes of potential
	Slajd 36: NGC 5907
	Slajd 37: Shapes of dark matter haloes
	Slajd 38: Shapes of dark haloes
	Slajd 39: Triaxiality
	Slajd 40: Axis ratios
	Slajd 41: Dark halo of the Milky Way
	Slajd 42: Dependence of shape on radius
	Slajd 43: Dependence of shape on mass
	Slajd 44: Sagittarius stream
	Slajd 45: A model for the Milky Way
	Slajd 46: Miyamoto-Nagai models
	Slajd 47: Model for Sgr stream
	Slajd 48: Oblate dark matter halo
	Slajd 49: Newer data
	Slajd 50: Orbits of dwarfs in the Local Group
	Slajd 51: Orbits of dwarfs
	Slajd 52: Collisionless systems
	Slajd 53: The distribution function
	Slajd 54: Relation to observables
	Slajd 55: Relation to observables
	Slajd 56: The velocity ellipsoid
	Slajd 57: Boltzmann equation
	Slajd 58: Integrals of motion
	Slajd 59: Jeans theorem
	Slajd 60: DFs depending on energy
	Slajd 61: DFs depending on energy
	Slajd 62: DFs depending on E and L
	Slajd 63: DFs depending on E and Lz
	Slajd 64: Eddington’s formula
	Slajd 65: Examples of DFs
	Slajd 66: Examples of DFs
	Slajd 67: Models with constant anisotropy
	Slajd 68: Osipkov-Merritt models
	Slajd 69: Anisotropy profiles for DM haloes
	Slajd 70: More general DFs
	Slajd 71: Spherical systems
	Slajd 72: Globular clusters
	Slajd 73: Dwarf spheroidals
	Slajd 74: Elliptical galaxies
	Slajd 75: Galaxy clusters
	Slajd 76: How to proceed without DF
	Slajd 77: Jeans equation
	Slajd 78: Observed velocity dispersion
	Slajd 79: Solutions of the Jeans equation
	Slajd 80: Solutions of the Jeans equation
	Slajd 81: Radial velocity dispersion
	Slajd 82: LOS velocity dispersion
	Slajd 83: Mass-anisotropy degeneracy
	Slajd 84: Examples of data sets
	Slajd 85: Measuring velocity dispersion
	Slajd 86: Fitting the dispersion  profiles
	Slajd 87: Fitted parameters
	Slajd 88: Problems in modelling dSphs
	Slajd 89: Schwarzschild's method
	Slajd 90: Orbit-based models
	Slajd 91: Contribution of different orbits
	Slajd 92: Orbit-based models

