
Radiative Processes

Krzysztof Nalewajko

October 2023

Contents

1 Electromagnetic radiation 1

2 Radiation measures 2

3 Spectrum of electromagnetic wave 4

4 Polarization 4

5 Thermal radiation 5

6 Radiation transport 7
6.1 Radiative di�usion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7 Radiation from moving charges 9

8 Bremsstrahlung 12

9 Radiation from electrons accelerated in magnetic �eld 13
9.1 Cyclotron radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9.2 Synchrotron radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
9.3 Curvature radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10 Radiation scattering o� electrons 17
10.1 Leptonic radiative processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.2 Thomson scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.3 Compton scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
10.4 Inverse Compton scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

11 Radiation propagating through plasmas 21
11.1 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11.2 Faraday Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

12 Absorption processes 23

13 Pair production and annihilation 23

14 Hadronic processes 24
14.1 Proton synchrotron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Electromagnetic radiation

Wave-particle duality. Electromagnetic radiation can be described classically as electromagnetic
waves or quantum-mechanically as a collection of photons.
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Electromagnetic wave. Maxwell's equations in Gaussian cgs units:

∇⃗ · E⃗ = 4πρe; ∇⃗ · B⃗ = 0; ∇⃗ × E⃗ = −1

c

∂B⃗

∂t
; ∇⃗ × B⃗ =

4π

c
j⃗ +

1

c

∂E⃗

∂t
. (1.1)

where E⃗ is the electric �eld, B⃗ is the magnetic �eld, ρe is the electric charge density, j⃗ is the electric
current density.

In vacuum (ρe = 0 and j⃗ = 0), those equations become symmetric:

∇⃗ · E⃗ = 0; ∇⃗ · B⃗ = 0; ∇⃗ × E⃗ = −1

c

∂B⃗

∂t
; ∇⃗ × B⃗ =

1

c

∂E⃗

∂t
. (1.2)

Their symmetry allows to obtain identical wave equations:

1

c2
∂2E⃗

∂t2
= ∇2E⃗;

1

c2
∂2B⃗

∂t2
= ∇2B⃗. (1.3)

A solution of the form E⃗ = E⃗0 exp(iωt + ik⃗ · r⃗) with angular (ordinary) frequency ω = 2πν and

wavevector k⃗ yields the dispersion relation ω2 = k2c2 or wavelength λ = 2π/k = 2πc/ω = c/ν, and

ties the amplitude vectors with k̂ = k⃗/k: B⃗0 = E⃗0 × k̂ and E⃗0 = −B⃗0 × k̂, hence E⃗ ⊥ B⃗ and E0 = B0.

Photons. Photons are massless particles propagating at constant speed c = λν � the speed of light
in vacuum1. A photon can be described by momentum p⃗ = pk̂, which corresponds to energy ϵ = pc,
which is related to the wave frequency as ϵ = hν = ℏω, with h = 2πℏ � the Planck constant2.

The parameters λ, ν or ω, and ϵ describe the electromagnetic spectrum, from radio waves to gamma
rays.
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Figure 1. Intensity of the extragalactic background (ν Iν in units of nWm−2 sr−1) as a function of thewavelength inmetres.We combine
the existing measurements from the literature to highlight the best determined estimates for the background from γ-ray to radio. The
CMBhas the least uncertainty as the spectrum is determined tobetter than 1%.COBhas largeuncertainties involvingdirectmeasurements
due to uncertain removal of the zodiacal light foreground. Here we show the indirect estimate of EBL at optical wavelengths based on
the TeV/γ-ray absorption spectra of distant blazars. The UV/soft X-ray background at a wavelength of 10–100 nm remains unexplored.
From left to right in increasing wavelength, the plotted datasets are: Fermi-LAT (the total extragalactic background composed of di%use
and resolved point sources) [8] and EGRET [9] (we have removed three data points from Strong et al. [10] at highest energies) in theγ-ray
spectrum, COMPTEL ((lled circles) [11] between γ- and X-rays, HEAO1 A2 and A4 [12,13], INTEGRAL [14], SWIFT/BAT [15], Nagoya balloon
experiment [16], SMM[17], ASCA [18] andRXTE [19] in thehard to soft X-ray regime ingreen symbols, DXS andCHIPS in soft X-rays/extreme
UV (as discussed in Smith et al. [20] as a line at 0.25 keV), HESS in optical [21] (see (gure 2 for other measurements), DIRBE [3] and FIRAS
[22] in the far-infrared, FIRAS atmicrowaves [23,24] and ARCADE [25] in the radio. The area under each of these backgrounds captures the
total energy density of the photons in each of those wavelength regimes. From γ-rays to radio the integrated intensity values in units
of nWm−2 sr−1 for key EBL components are approximately 0.015 (γ-ray), approximately 0.3 (X-ray), 0.01–0.02 (lower and upper limits
at 4.9 nm for extreme UV), 24 ± 4 (with an additional±5 systematic; optical), approximately 30 ± 10 (CIB), 960 (CMB) and less than
0.001 (radio).

other AGNs at cosmological distances to infer the number density of intervening infrared photons that
are responsible for electron–positron pair production by interactions with TeV photons. This has led to
the best determined COB measurements in the literature, especially given the fact that modelling and
removing zodiacal light remains a challenge for direct EBL intensity measurements around 1 µm.

We summarize existing EBL intensity measurements in figure 1 where we plot the spectral intensity
λIλ as a function of the wavelength λ. In this figure, the area under each of the spectral components
represents the total energy density associated with each of those backgrounds. Those values are listed in
the caption of figure 1 where the estimates were made using a statistical average of existing results from
the literature. In most of these measurements large systematics, associated with foreground models, are
likely to be still present. Here we briefly outline the techniques, foregrounds and systematics associated
with EBL measurements. We also discuss their applications for astrophysical and cosmological studies
and briefly summarize studies related to spatial anisotropies. We cover from short to long wavelengths
starting from the γ-ray background.

1.1. γ-ray
The early measurements of the CGB intensity came from SAS-2 between 40 and 300 MeV in 1978
[49], followed by EGRET between 40 MeV and 10 GeV in 1998 [9,10]. These measurements have been
superseded in this decade by Fermi-LAT covering 100 MeV to 800 GeV with roughly 25–30 times better
sensitivity than EGRET, as well as overall an improvement in the flux calibration. The CGB spectrum
measured by Fermi-LAT shows a cutoff at energy scales around 280 GeV [8]. Below this cutoff, the
spectrum can be described by a single power law with a spectral index about 2.3 (±0.05). The cutoff
is explained as the disappearance of the high-energy photons that are pair-producing via interactions
with the infrared background photons that we discuss later [50–53].

The CGB spectrum below the cutoff is mostly explained in terms of a combination of AGNs in the
form of blazars and γ-ray emission from SFGs. Small, but non-negligible depending on the exact energy,
comes from millisecond pulsars, Type Ia supernovae and γ-rays from galaxy clusters. At energies above
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Figure 1: Speci�c intensity of the cosmic radiation background (Cooray 2016, Royal Society Open
Science, 3, 150555).

2 Radiation measures

Treated as a collection of electromagnetic waves, radiation can be measured by integrating their energy
and momentum densities. At any �xed point r⃗, the time-averaged energy density of electromagnetic

1c = 2.99792458× 1010cm/s
2h = 6.62607015× 10−27erg/s
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wave is

u = uE + uB =

〈
E2

〉
+
〈
B2

〉
8π

=
E2

0/2 +B2
0/2

8π
=
E2

0

8π
, (2.1)

and the time-averaged energy �ux (momentum times c) density (Poynting �ux) is

S⃗ =
c

4π

〈
E⃗ × B⃗

〉
=

c

4π

E0B0

2
k̂ = c

E2
0

8π
k̂ . (2.2)

Treated as a collection of photons, radiation can be measured by counting the photons number N
or by integrating their combined energy E =

∑
i=1,N ϵi.

Phase space element. A photon can be located in the 6-dimensional phase space (r⃗, p⃗). The element
of position space (volume) can be decomposed as dV = d3r⃗ = dA⊥ cdt with dA⊥ the area element

perpendicular to the propagation direction k̂. The element of momentum space can be decomposed as

d3p⃗ = p2 dp dΩ =
ϵ2

c3
dϵdΩ =

h3ν2

c3
dν dΩ , (2.3)

with dΩ the solid angle element3. Hence, the element of phase space can be written as d3r⃗ d3p⃗ =
(h3ν2/c2) dA⊥ dtdν dΩ.

Speci�c intensity. Consider a measure of radiation energy per phase space element:

dE
d3r⃗ d3p⃗

=
c2

h3ν2
dE

dA⊥ dtdν dΩ
≡ c2

h3ν2
Iν (2.4)

where Iν ≡ dE/(dA⊥ dtdν dΩ) is the speci�c intensity, a fundamental radiation measure in astro-
physics, from which other measures can be obtained by integration.

Total intensity. The total (bolometric) intensity is the integral of speci�c intensity over all fre-
quencies I ≡

∫
dν Iν = dE/(dA⊥ dtdΩ). Other measures can also be de�ned in the speci�c or total

versions.

Lorentz invariance. A phase space element is invariant to Lorentz transformation. For a boost
along x by Lorentz factor Γ, the length contraction dx = dx′/Γ is compensated by the momentum
boost dpx = Γdp′x. Since dE = ϵdN = hν dN , and the number of photons dN is invariant, Iν/ν

3 is
also invariant.

Energy density. The energy density is a measure of radiation energy per volume element:

u ≡ dE
dV

=
1

c

dE
dA⊥ dt

. (2.5)

It is thus equivalent to the intensity I(Ω) integrated over all solid angles: u =
∫
4π

dΩ I(Ω)/c.

Energy �ux (density). The energy �ux density is a measure of radiation energy crossing a surface
element (in particular of a source or a detector) in unit time:

F ≡ dE
dA dt

. (2.6)

Such radiation may consist of various beams of intensity I(Ω) making angles θ with the unit vector n̂
normal to the surface element. For each such beam, the volume occupied by photons that cross the
surface over time range dt is dV (Ω) = cdtdA cos θ. Noting that dE(Ω) = I(Ω)dV (Ω) dΩ/c, one �nds:

F =

∫
4π

dΩ
dE(Ω)

dAdtdΩ
=

∫
4π

dΩ
I(Ω) dV (Ω)/c

dA dt
=

∫
4π

dΩ I(Ω) cos θ . (2.7)

3For example, in spherical coordinates (r, θ, ϕ) a solid angle element anchored at r = 0 is dΩ = sin θ dθ dϕ = dµ dϕ,
where µ = cos θ.
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Pressure. Let P⊥ =
∑

i p⊥,i =
∑

i ϵi cos θi/c be the combined momentum of radiation normal to a
given surface. One can de�ne the momentum �ux (density) as

Fp ≡ dP⊥
dAdt

=

∫
4π

dΩ I(Ω) cos2 θ/c . (2.8)

The momentum �ux density is closely related to the radiation pressure Prad exerted on a medium,
depending on how they interact. If the radiation is completely absorbed, Prad = Fp; if the radiation is
completely re�ected, Prad = 2Fp.

Isotropic radiation. Let I(Ω) = I. The energy density is u = 4πI/c, the energy �ux density is
F = 0, and the momentum �ux density is Fp = 4πI/3c = u/3. One can also calculate the emergent

energy �ux density (one-way �ux, i.e., µ = cos θ > 0): F+ =
∫
2π

dΩ I cos θ = 2πI
∫ 1

0
dµµ = πI.

Unidirectional radiation. Let I(Ω) = I δ(θ)/(2π sin θ), so that u = (I/2πc)
∫
dθ dϕ δ(θ) = I/c.

The energy �ux density is F = I
∫ π

0
dθ δ(θ) cos θ = I, and the momentum �ux density is Fp =

(I/c)
∫ π

0
dθ δ(θ) cos2 θ = I/c. Hence, in this case u = F/c = Fp = I/c.

Luminosity. The luminosity (energy �ux, power) is a measure of radiation energy emitted by a
source in unit time: L ≡ dE/dt. Luminosity can be calculated by integrating the emitted energy �ux
over the source surface: L =

∫
dAF (A). For a spherical source of radius R and uniform emission �ux:

L = 4πR2F . In such case, the �ux measured at arbitrary distance r > R is F (r) = L/(4πr2) (inverse
square law).

True luminosities of astrophysical sources are observationally inaccessible. The best one can do is
to estimate the apparent luminosity Lapp = 4πd2LFobs from the observed energy �ux density Fobs and
the luminosity distance dL.

3 Spectrum of electromagnetic wave

The spectral distribution of radiation measures can be readily explained in terms of counting photons
of various energies. When unidirectional radiation is de�ned in terms of an electromagnetic wave, its
instantaneous intensity (energy �ux density, Poynting �ux density) is

I(t) ≡ F (t) ≡ S(t) ≡ dE
dtdA⊥

=
c

4π
E2(t) . (3.1)

The electric �eld E(t), measured for an extended period of time, can be Fourier transformed into the
frequency space, e.g.:

Ê(ω) =
1

2π

∫ ∞

−∞
dt exp(iωt)E(t) . (3.2)

The total energy of such radiation per unit area can be matched between the spaces of time and
freuqency:

dE
dA⊥

=
c

4π

∫ ∞

−∞
dt E2(t) =

c

2

∫ ∞

−∞
dω |Ê(ω)|2 = c

∫ ∞

0

dω |Ê(ω)|2 . (3.3)

The middle transition is due to the Parseval's theorem, and the last transition is due to elimination by
symmetry of negative frequencies (since Ê is complex). The spectrum of radiation energy deposited
over time per unit area is thus:

dE
dω dA⊥

= c|Ê(ω)|2 , dE
dν dA⊥

= 2πc|Ê(ν)|2 . (3.4)

4 Polarization

The dispersion relation for electromagnetic wave in vacuum allows two solutions: ω = ±kc. At any
�xed position, e.g. r⃗ = 0, one can write the general complex solution as (allowing for di�erent phases
at t = 0):

E⃗ = E⃗1 exp(ikct+ iϕ1) + E⃗2 exp(−ikct− iϕ2) . (4.1)
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The measured electric �eld is the real part:

Re(E⃗) = E⃗1 cos(kct+ ϕ1) + E⃗2 cos(kct+ ϕ2) (4.2)

What this describes in general is an ellipse of arbitrary orientation. This ellipse can be traced in two
directions (from the observer point of view): clockwise (right-handed polarization; positive helicity)
or counterclockwise (left-handed polarization; negative helicity). An ellipse may degenerate to a line
(linear polarization) or to a circle (circular polarization).

Stokes parameters. Without losing generality, an observer may choose a coordinate system (x, y)

and re-de�ne the electric �eld amplitudes such that E⃗1 = E1x̂ and E⃗2 = E2ŷ. Then, a coherent
radiation signal can be determined by measuring 4 scalar parameters: E1, E2, ϕ1, ϕ2. Those can be
used to de�ne the 4 Stokes parameters:

I = E2
1 + E2

2 (4.3)

Q = E2
1 − E2

2 (4.4)

U = 2E1E2 cos(ϕ1 − ϕ2) (4.5)

V = 2E1E2 sin(ϕ1 − ϕ2) (4.6)

On the other hand, an arbitrary ellipse can be parametrized in terms of major axis amplitude
E′

1 > 0, minor axis amplitude E′
2 (|E′

2| < E′
1) and position angle of the major axis χ. The Stokes

parameters become:

I = E′2
1 + E′2

2 (4.7)

Q = (E′2
1 − E′2

2 ) cos(2χ) (4.8)

U = (E′2
1 − E′2

2 ) sin(2χ) (4.9)

V = 2E′
1E

′
2 (4.10)

Linear and circular polarization. Note two important limits:

� E′
2 = 0 (V = 0): the ellipse degenerates to a line, this is the case of linear polarization.

� E′
2 = ±E′

1 (Q = U = 0): the ellipse degenerates to a circle, this is the case of circular polarization.
The sign of E′

2 determines the sign of V , hence the sign of helicity).

Hence, I measures the total intensity,
√
Q2 + U2 the linearly polarized intensity with the electric

vector polarization angle (EVPA) χ = arctan2(U,Q)/2, V the circularly polarized intensity.

Polarization degree. Note that the above Stokes parameters satisfy I2 = Q2 +U2 + V 2 (not inde-
pendent, since ϕ1, ϕ2 → ϕ1−ϕ2), meaning that a coherent monochromatic radiation signal is completely
polarized. A partial polarization always results from incoherence (e.g., extended source, �nite band-
width, imperfect detector). In general, the measured Stokes parameters satisfy I2 ≥ Q2 + U2 + V 2.

One can introduce the linear polarization degree Π =
√
Q2 + U2/I and the circular polarization degree

Πc = V/I.

Quantum description of radiation polarization. Every photon can be characterized by a positive
or negative spin ±ℏ. Also in the classical description, one can show that a polarized electromagnetic
wave carries angular momentum of density r⃗ × S⃗, the sign of which depends on the helicity.

5 Thermal radiation

A system in thermal equilibrium emits radiation with characteristic (Planck or `blackbody') spectrum
and intensity Ith(ν, T ), a function of the system temperature T . Most of the observable Universe
is very far from thermal equilibrium, but three thermal bumps can be seen in the cosmic radiation
background: optical (stars), infrared (dust) and microwave (CMB). The CMB spectrum measured by
COBE is astonishingly close to the Planck function for T ≃ 2.725K.
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2

sorber”? What is the role of the cavity? More impor-
tantly, what would an imperfect blackbody be? A cavity
which does not absorb all incident radiation? One with
a bigger aperture?

B. A continuous spectrum

Many objects emit light like imperfect blackbodies.
The most prominent among them is, of course, our Sun
(see Fig. 1). Its spectrum, first measured in the early
nineteenth century by Wollaston and Frauhofer, is well
approximated by that of a blackbody of temperature
between 5500 and 6000 K. It does displays deviations
from it, the so-called Fraunhofer lines (corresponding to
the absorption of certain frequencies by the solar atmo-
sphere), but it is indisputable that, athough very dissim-
ilar from an absorbing cavity with a tiny hole, the Sun
qualifies as an imperfect blackbody. On the other hand,
the spectroscopy of monoatomic gases shows clearly that
their emission spectrum is not Planckian. They emit only
certain discrete frequencies (Fig. 2), determined by the
electronic structure of the atoms.21

This observation hints at what a blackbody really is: a
body with a rich energy spectrum, capable of exciting all
frequencies of light by thermalization.22

From this perspective, the box definition appears para-
doxical. As is well-known, a closed box selects certains
light frequencies, through the condition ωi = nπc/Li,
where Li is the dimension of the box in the i-direction.
Thus, instead of permitting a wide range of thermally
excited frequencies, the box restricts the emission spec-
trum, even making it discrete. Of course, one could argue
that the volume of the box can be made arbitrarily large,
and therefore that this quantization of frequencies is not
physically relevant. But this is precisely our point: as far
as the frequencies of light are concerned, the box is not
physically relevant.

C. Kirchhoff’s law

In its standard definition, a blackbody is one that “ab-
sorbs all incident light” – a black body. This fact alone
should disturb the mindful student: how can a body be
black, and yet emit a colourful spectrum of thermal light?
In any case, what should the absorptive power of a body
have anything to do with the caracteristics of its thermal
emission?

The answer lies in an experimental observation which
played a key role in the nineteenth century developments
which led to Planck’s successful analysis of thermal radi-
ation, and which is too seldom mentioned in undergrad-
uate discussions of thermal radiation – Kirchoff’s law.10

The radiative properties of a body are characterized by
its emissivity and absorptivity (and scattering, which can
usually be neglected). These can be defined by the fol-
lowing schematic model for the propagation of radiation

FIG. 1: The Sun is an imperfect blackbody, monoatomic gases
are not (top: hydrogen; bottom: iron).

within a medium.11 As the (monochromatic) beam trav-
els trough the medium, the variation of its energy density
u(l, ω) receives two contributions: a positive one, corre-
sponding to emission, and a negative one, corresponding
to absorption:

du

dl
(l, ω) = ε(ω) − α(ω)u(l, ω). (1)

The coefficients ε(ω) and α(ω) are the emissivity and ab-
sorptivity of the body. Now, Kirchoff’s law states that,
although ε(ω) and α(ω) largely depend on the constitu-
tion of the material, at thermal equilibrium, their ratio
JT (ω) ≡ ε(ω)/α(ω) is universal ; it depends on temper-
ature and frequency only. A good absorber (α(ω) large)
at a certain frequency is also a good emitter (ε(ω) large)
at that frequency, and vice versa.

At this point, our mindful student’s worries should al-
ready be eased: if Kirchhoff’s law is right, then black-
bodies, which are by definition excellent absorbers, must
also be excellent emitters. But further reflection should
reveal a caveat in this line of thought: emissivity and
absorptivity usually depend on the actual material used,
while the blackbody radiation it emits does not. Why is
that?

Some insight into this question is provided by the fol-
lowing consideration, due to Einstein.12 The interaction
between matter and radiation boils down to transitions
between energy levels: given two levels a and b, with
respective energies Ea < Eb, emission corresponds to
an upgoing transition a → b, while absorption corre-
spond to a downgoing transition b → a. The rate of
these transitions, Γa→b and Γb→a, is what controls at the
microscopic level the absorptivity and emissivity of the

Most models for structure formation predict that the temperature variations should follow a 
Gaussian distribution for large angles (corresponding to the DMR measurements). In inflation 
based models the Gaussian distribution originates from primordial quantum fluctuations. 
COBE’s DMR data showed Gaussian, near scale-invariant temperature fluctuations and in 
that sense provides support for inflation models (Kogut et al. 1996). 

Blackbody spectrum 
The FIRAS instrument (Mather et al. 1982) measured the CMB spectrum in the wavelength 
range 0.1 – 10 mm and proved it to follow a blackbody form with high precision. Figure 6 
shows the first FIRAS results in the wavelength range 0.5 – 5 mm (Mather et al. 1990), 
obtained after only nine minutes. The data follow perfectly a blackbody spectrum with the 
temperature 2.735 ± 0.060 K. At the time this was a surprising discovery, because of earlier 
measurements (e.g. Matsumoto et al. 1988 at 0.5 and 0.8 mm) that had shown very significant 
departures from a blackbody form and thereby cast doubt on the Big Bang model. 

Figure 7 shows the deviations from a blackbody spectrum with a temperature of 2.726 ± 0.010 
K published 1994 (Mather et al. 1994). After careful studies of errors caused by the FIRAS 
calibrator (figure 4), the CMB temperature was finally given as 2.725 ± 0.002 K (Mather et al. 
1999) with deviations from a blackbody spectrum less than 1 part in 105. 

Fig. 6. The first FIRAS result (Mather et al. 1990). Data had been accumulated during nine 
minutes in the direction of the northern galactic pole. The small squares show measurements 
with a conservative error estimate of 1%. The unit along the vertical axis is erg (cm s sr)-1. 
The relation to SI units is 1 MJy sr-1 = 2.9979⋅10-7 erg (cm s sr)-1. The full line is a fit to the 
blackbody form.    

Figure 2: Left: spectrum of the solar radiation (Smerlak 2011, European Journal of Physics, 32, 1143).
Right: spectrum of the cosmic microwave background measured by COBE/FIRAS with exposure of 9
minutes (Mather et al. 1990, ApJ, 354, L37).

Planck spectrum. The Planck spectrum can be derived from two principles: (1) the quantization
of possible photon states, and (2) statistical distribution of state occupation. Photons are massless
bosons that achieve thermal equilibrium with a surrounding system by being constantly emitted and
absorbed. Each photon state can be occupied by multiple photons, the distribution of state occupation
numbers is determined by thermodynamics.

In a 1-dimensional cavity of length L, the allowed photon states are those of wavelengths λm = L/m
for integers m = 1, 2, .... The corresponding energies are Em = hνm = hc/λm = mhc/L. Each state
occupies an element of phase space ∆x∆px = λmEm/c = h, in accordance with the uncertainty
principle. Each such phase space element allows for 2 states, accounting for the photon spin values
±ℏ. Thus, in a 3-dimensional cavity, the phase space density of states is dNs = (2/h3)d3x d3p. Since
d3p = p2 dp dΩ = (h/c)3ν2 dν dΩ, the spectral density of states is dNs = (2ν2/c3)dV dν dΩ.

Under thermal equilibrium with temperature T , the probability that a particular state is occupied
by n ∈ {0, 1, 2, ...} photons is Pn = C exp(−nE/kBT ) ≡ CQn with Q = exp(−E/kBT ), where E = hν
is the energy of a single photon in that state, and kB is the Boltzmann's constant. The normalization
constant C can be found from

∑∞
n=0 Pn = 1, i.e., C = 1−Q. The mean occupation number of a state

is:

⟨n⟩ =
∞∑

n=0

nPn =
Q

1−Q
=

1

exp(E/kBT )− 1
. (5.1)

The mean spectral number density of photons is thus:

dN = ⟨n⟩dNs =
2ν2/c3

exp(hν/kBT )− 1
dV dν dΩ . (5.2)

This corresponds to a speci�c intensity:

Ith(ν, T ) =
E dN

dV dν dΩ/c
=

2hν3/c2

exp(hν/kBT )− 1
. (5.3)

Rayleigh-Jeans law (hν ≪ kBT ). In the classical limit of low photon energies, one can approximate
the denominator to obtain:

Ith(ν, T ) ≃ 2kBT
ν2

c2
. (5.4)

This can be used to de�ne the brightness temperature Tb = (Iν/2kB)(c
2/ν2) as a measure of brightness,

especially in radio astronomy.

Wien law (hν ≫ kBT ). In the limit of high photon energies, the approximation is:

Ith(ν, T ) ≃
2hν3

c2
exp

(
− hν

kBT

)
. (5.5)
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Spectral peak. To �nd the peak of Ith(ν, T ), we can write it as function of x ≡ hν/kBT , i.e.,
Ith(x, T ) = (2/c2h3)(kBT )

4x3/(ex−1), and solve dIth(x, T )/dx = 0, which is equivalent to (3−x)ex = 3,
the solution to which is xpeak = hνpeak/kBT ≃ 2.82. This relation (νpeak ∝ T ) is theWien displacement
law.

Broad-band astronomical observations are often presented in the form of spectral energy distribution
(SED) νFν , which measures the radiative energy content per decade of frequency range dE/d(log ν).
The peak of a Planck SED is equivalent to solving (4− x)ex = 4, which yields xpeak = hνpeak/kBT ≃
3.92.

Total intensity. The bolometric blackbody intensity can be calculated by integration:

Ith(T ) =

∫ ∞

0

dν Ith(ν, T ) =
2(kBT )

4

c2h3

∫ ∞

0

dx
x3

ex − 1
. (5.6)

The value of this integral is π4/15, hence:

Ith(T ) =
2π4k4B
15c2h3

T 4 . (5.7)

This gives the Stefan-Boltzmann law, which is typically stated in terms of emergent energy �ux density
Fth(T ) = πIth(T ) = σSBT

4 with the Stefan-Boltzmann constant:

σSB =
2π5k4B
15c2h3

. (5.8)

The Stefan-Boltzmann law can be used to de�ne the e�ective temperature Teff = (F/σSB)
1/4, using an

observational estimate of bolometric energy �ux density F .

6 Radiation transport

Recall that the fundamental radiation measure is the speci�c intensity Iν ≡ dE/(dA⊥ dtdν dΩ), closely
related to the phase space density of radiation energy. The total intensity is I =

∫
dν Iν . It is of prime

astrophysical interest to know how does this measure evolve along the radiation path (geodesic) from
the source to the observer.

Emission. Let dl = cdt be a distance element passed by a radiation beam through an emitting
medium. An increase of total intensity dI = +j dl de�nes the emission coe�cient j ≡ dEem/(dtdV dΩ),
the radiation energy emitted per unit time, unit volume and unit solid angle.

Absorption. A medium through which a radiation beam passes may also absorb some of it, reducing
the intensity. A decrease of total intensity dI = −αI dl de�nes the absorption coe�cient α [1/cm], a
fraction of intensity absorbed per unit length.

A simple model for absorbing medium is that it consists of microscopic absorbers of number density
n [1/cm3], each of a cross section σ [cm2], so that α = σn.

Scattering. Scattering is a process of changing the direction of photons. It may be included in both
the absorption of an incident beam and emission along scattered beams, or treated separately.

Radiative transfer equation. The combined e�ect of emission and absorption is described by the
radiative transfer equation:

dI

dl
= j − αI . (6.1)

Two basic cases are:

� pure uniform emission: I(l) = I(0) + jl;

� pure uniform absorption: I(l) = I(0) exp(−αl).
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Optical depth. For an absorbing medium (α > 0), a dimensionless parameter called optical depth
is de�ned as dτ = α dl. It allows to simplify the radiation transfer equation:

dI

dτ
=
j

α
− I ≡ S − I , (6.2)

where S ≡ j/α is the source function.

Mean free path. The average distance lmfp travelled by a photon before being absorbed (or scat-
tered) corresponds to an optical depth of unity τ(lmfp) = 1. For a uniform absorption coe�cient:
lmfp = 1/α.

6.1 Radiative di�usion.

In a relatively opaque homogeneous static medium (high absorption coe�cient, short mean free path)
of temperature T , any initial radiation �eld approaches isotropic thermal distribution, i.e., both the
speci�c intensity and source function I(ν), S(ν) → Ith(ν, T ).

Eddington approximation. A weakly anisotropic radiation �eld is approximated as I(µ) ≃ I0+I1µ.
One can de�ne the following moments of I(µ):

J =
1

2

∫ 1

−1

dµ I(µ) = I0 , H =
1

2

∫ 1

−1

dµµI(µ) =
I1
3
, K =

1

2

∫ 1

−1

dµµ2I(µ) =
I0
3
. (6.3)

These moments are proportional to mean intensity, energy �ux density and pressure, respectively. Note
that K = J/3.

One can take the moments of the radiative transfer equation. Assume that the source function S =
S0 is independent of µ (isotropic). Also, de�ne the normal optical depth as dτr ≡ µdτ = µα dl = α dr:

µ
dI

dτr
= S − I , (6.4)

dH

dτr
=

1

2

∫ 1

−1

dµµ
dI

dτr
=

1

2

∫ 1

−1

dµ (S − I) = S0 − I0 , (6.5)

dK

dτr
=

1

2

∫ 1

−1

dµµ2 dI

dτr
=

1

2

∫ 1

−1

dµµ(S − I) = −H , (6.6)

1

3

d2I0
dτ2r

=
d2K

dτ2r
= −dH

dτr
= I0 − S0 . (6.7)

This is a di�usion equation for the isotropic intensity component I0.

Rosseland approximation. Under a small departure from homogeneity, e.g., a temperature gradi-
ent dT/dr (e.g. in stellar interiors), radiation transport takes the form of slow di�usion by random
walks over distances ∼ lmfp. The radiation transfer equation can be approximated as:

I = S − dI

dτ
≃ Ith − dIth

dτ
. (6.8)

Consider that dτ = α dl = (α/µ) dr, where µ = cos θ of the angle between directions of the radiation

beam l̂ and of the temperature gradient r̂:

I ≃ Ith − µ

α

dIth
dr

. (6.9)

Hence, we introduced an anisotropic (dipole) correction which is going to yield a net energy �ux density.

F (r) =

∫
4π

dΩ Iµ ≃ −
∫
4π

dΩ
µ2

α

dIth
dr

= −2π

α

dIth
dr

∫ 1

−1

dµµ2 = −4π

3α

dIth
dr

(6.10)

The gradient of thermal intensity can be related to the gradient of temperature using the Stefan-
Boltzmann law:

Ith =
σSBT

4

π
,

dIth
dr

=
dIth
dT

dT

dr
=

4σSBT
3

π

dT

dr
. (6.11)
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With this, the energy �ux density is:

F (r) ≃ −16σSBT
3

3α

dT

dr
. (6.12)

This is the Rosseland approximation for the radiative energy �ux density.
In the above derivation, we have implicitly assumed that absorption coe�cient α is independent

of radiation frequency. The e�ect of frequency-dependent αν can be introduced at the stage of Eq.
(6.10):

F (ν, r) ≃ − 4π

3αν

dIth(ν, T )

dr
= − 4π

3αν

∂Ith(ν, T )

∂T

dT

dr
. (6.13)

Integrating over frequency:

F (r) =

∫ ∞

0

dν F (ν, r) ≃ −4π

3

dT

dr

∫ ∞

0

dν α−1
ν

∂Ith(ν, T )

∂T
≡ −4π

3

dT

dr
α−1
R

dIth(T )

dT
= −16σSBT

3

3αR

dT

dr
,

(6.14)
where αR is the Rosseland mean absorption coe�cient.

7 Radiation from moving charges

Source of electromagnetic �elds. In lecture 1 we have mentioned that electromagnetic �elds in
vacuum satisfy wave equations. In general, the Maxwell's equations couple the electromagnetic �elds
to electric charges qi of volume density ρe =

∑
i qini and currents qiv⃗i of density j⃗ =

∑
i qiv⃗i:

∇⃗ · E⃗ = 4πρe , c∇⃗ × B⃗ − ∂tE⃗ = 4πj⃗ . (7.1)

Electromagnetic potentials. A symmetry of these equations can be revealed by using the electro-
magnetic potentials. The electric scalar potential ϕ and magnetic vector potential A⃗ can always be
found to satisfy E⃗ = −∇⃗ϕ−∂0A⃗ 4 and B⃗ = ∇⃗×A⃗. Such potentials automatically satisfy the remaining
two Maxwell's equations ∇⃗ · B⃗ = 0 and ∇⃗ × E⃗ = −∂0B⃗. They are, however, not unique: potentials
modi�ed as A⃗+ ∇⃗ψ and ϕ− ∂0ψ for any gauge function produce the same electromagnetic �elds.

Electromagnetic potential wave equations. In terms of the potentials, Eqs. (7.1) become:

∂20ϕ−∇2ϕ = 4πρe , ∂20A⃗−∇2A⃗ =
4π

c
j⃗ , (7.2)

together with the Lorentz gauge ∂0ϕ+ ∇⃗ · A⃗ = 0.
Note an elegant covariance of these equations in terms of the 4-vectors Aµ = (ϕ,Ai), jµ = (ρec, j

i),
and ∂µ = (∂0, ∂i):

∂ν∂νA
µ =

4π

c
jµ , ∂µA

µ = 0 . (7.3)

Retarded potentials. Eqs. (7.2) can be solved using a Green's function to obtain:

Aµ(t, r⃗) =
1

c

∫
dt′ d3r⃗ ′ j

µ (t′, r⃗ ′)
|r⃗ − r⃗ ′| δ (t′ − t+ |r⃗ − r⃗ ′|/c) , (7.4)

where the δ function selects the retarded time t′ = t− |r⃗ − r⃗ ′|/c for any retarded position r⃗ ′.
This approach is particularly meaningful in the astronomical (especially cosmological) context - the

electromagnetic radiation that we presently observe was produced by the distribution of electric charge
in often extremely distant sources in their distant past.

4∂0 ≡ ∂/∂x0 = ∂/∂(ct) = (1/c)∂t
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Retarded potentials from a single charged particle. As the most elementary example, one can
consider a single particle of charge q, trajectory r⃗0(t), and velocity v⃗0(t) = dr⃗0/dt. The contribution
of this particle to the charge and current densities can be expressed in terms of the δ function:

ρe(t, r⃗) = q δ (r⃗ − r⃗0(t)) , j⃗(t, r⃗) = qv⃗0(t) δ (r⃗ − r⃗0(t)) . (7.5)

Let's calculate the electric scalar potential:

ϕ(t, r⃗) = q

∫
dt′ d3r⃗ ′ δ (r⃗

′ − r⃗0(t
′))

|r⃗ − r⃗ ′| δ (t′ − t+ |r⃗ − r⃗ ′|/c) . (7.6)

The �rst δ function can be eliminated by integrating over d3r⃗ ′:

ϕ(t, r⃗) = q

∫
dt′

δ(t′ − t+R(t′, r⃗)/c)
R(t′, r⃗)

, (7.7)

where R⃗(t′, r⃗) = r⃗ − r⃗0(t
′) and R = |R⃗|.

The argument of the remaining δ function is a non-linear function of t′. It is substituted as t′′ =
t′−t+R(t′, r⃗)/c, hence dt′′ = [1−n⃗(t′, r⃗)·β⃗0(t′)] dt′ ≡ κ(t′, r⃗) dt′, where n⃗(t′, r⃗) = R⃗/|R⃗| and β⃗0 = v⃗0/c:

ϕ(t, r⃗) = q

∫
dt′′

δ(t′′)
κ(t′, r⃗)R(t′, r⃗)

=
q

κ(t′, r⃗)R(t′, r⃗)
. (7.8)

If the particle is at rest (β⃗0 = 0, hence κ = 1), this result is consistent with the Coulomb potential.
The additional factor κ(t′, r⃗) contributes to the relativistic beaming (Doppler e�ect and aberration).

The corresponding magnetic vector potential is

A⃗(t, r⃗) =
qβ⃗0(t

′)
κ(t′, r⃗)R(t′, r⃗)

. (7.9)

Together, these are known as the Lienard-Wiechert potentials.

Retarded electromagnetic �elds. The Lienard-Wiechert potentials correspond to the following
electric �eld:

E⃗(t, r⃗) =
q

Γ2κ3R2

(
n⃗− β⃗

)
+

q

c2κ3R

{
n⃗×

[(
n⃗− β⃗

)
× a⃗

]}
, (7.10)

where Γ = 1/
√
1− β2 is the Lorentz factor, and a⃗ = dv⃗/dt is the acceleration. All of the right-

hand side should be evaluated at the retarded time t′. The corresponding magnetic �eld is simply
B⃗(t, r⃗) = n⃗(t′, r⃗)× E⃗(t, r⃗).

Figure 3: (Fig 3.2 in Rybicki & Lightman, 1979) Electric �eld lines sourced by a charge shifting rapidly
from resting at x = 1 to resting at x = 0. The 1/R2 Coulomb �elds must be joined within a transition
shell of �xed width, hence the �eld strength within the shell scales like 1/R. This argument was
originally presented by Thomson (1906).

This electromagnetic �eld consists of two components. The �rst term (velocity �eld) scales like
1/R2 and reduces to the Coulomb �eld in the limit of charge at rest. The second term (acceleration
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�eld) scales like 1/R, clearly dominating at large distances, and it is strictly perpendicular to n⃗. This
term is responsible for the electromagnetic radiation:

E⃗rad(t, r⃗) =
q

c2κ3R

{
n⃗×

[(
n⃗− β⃗

)
× a⃗

]}
. (7.11)

Non-relativistic limit. When the particle velocity is non-relativistic (β ≪ 1), beaming becomes
unimportant (κ ≃ 1). The radiation �eld is simpli�ed to:

E⃗rad(t, r⃗) ≃
q

c2R
{n⃗× [n⃗× a⃗]} . (7.12)

This vector product can be recognized to represent the component of acceleration vector perpendicular
to the line of sight n⃗. Let Θ be the angle between a⃗ and n⃗. Since the parallel acceleration is a⃗∥ =
(⃗a · n⃗)n⃗ = (a cosΘ)n⃗, the perpendicular acceleration is a⃗⊥ = a⃗− a⃗∥ = (n⃗ · n⃗)⃗a− (⃗a · n⃗)n⃗ = −n⃗× (n⃗× a⃗),
its magnitude is a⊥ = a sinΘ, hence:

E⃗rad(t, r⃗) ≃ − q

c2R
a⃗⊥ , |Erad| ≃

|qa⊥|
c2R

. (7.13)

This electric �eld is a dipole, and its Poynting �ux density is then:

S =
c

4π
E2

rad ≃ 1

4πR2

q2

c3
a2⊥ . (7.14)

This represents the energy �ux density dE/(dA⊥ dt) of a unidirectional radiation beam through a
normal area element dA⊥ = R2 dΩ. The total luminosity emitted by a non-relativistic charge is thus:

L =
dE
dt

=

∫
dA⊥ S ≃

∫
dΩ

q2

4πc3
a2⊥ =

q2a2

4πc3

∫
dΩ sin2 Θ =

q2a2

2c3

∫ 1

−1

dµ (1− µ2) =
2q2

3c3
a2 . (7.15)

This is known as the Larmor's formula. Radiation from a non-relativistic charge is a dipole perpen-
dicular to the acceleration vector.

Spectrum. A Fourier transform of the radiation electric �eld is:

Êrad(ω) =
1

2π

∫ ∞

−∞
dt exp(iωt)Erad(t) . (7.16)

If, however, the radiation �eld has a form of a sharp pulse of duration τ , the transform can be limited
to the frequency window of ωτ < 1, in which exp(iωt) ≃ 1. Then we have:

Êrad(ω) ≃
q

2πc2R

∫
τ

dt a⊥(t) =
q

2πc2R
∆v⊥ . (7.17)

The energy spectrum per unit area will be:

dE
dω dA⊥

= c|Ê(ω)|2 ≃ q2

(2π)2c3R2
(∆v⊥)

2 . (7.18)

Integrating over dA⊥ = R2 dΩ in the dipole approximation ∆v⊥ = ∆v sinΘ, we �nd the total energy
spectrum:

dE
dω

≃ q2

(2π)2c3
(∆v)2

∫
dΩ sin2 Θ =

2q2

3πc3
(∆v)2 . (7.19)

The spectrum of radiation produced by many impulsive acceleration events is thus determined by the
statistics of velocity changes during such events.

Dipole approximation. In the case of many charges located in a region much smaller than its
distance R0, i.e., at positions R⃗i = R⃗0 + r⃗i such that ri ≪ R0, the relevant parameter for their

collective emission is the dipole moment d⃗ =
∑

i qir⃗i and its second time derivative
¨⃗
d =

∑
i qia⃗i.
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Relativistic limit. In special relativity, the four-acceleration can be de�ned as aµ = duµ/dτ =
d2xµ/dτ2, where τ is the proper time. Recall that xµ = (ct, x⃗), uµ = γ(c, v⃗), γ = (1 − v2/c2)−1/2. In
particular, u0 = d(ct)/dτ = γc, hence dτ = dt/γ. Since uµu

µ = −c2, then aµuµ = (1/2)d(uµu
µ)/dτ =

0. In the particle's instantaneous rest frame, u′µ = (c, 0, 0, 0), hence a′µu
′µ = a′0c = 0, hence a′0 = 0,

hence aµa
µ = a′µa

′µ = a⃗′ · a⃗′. Since energy and time transform in the same way, total power or
luminosity is a Lorentz invariant: L = dE/dt = dE ′/dt′ = L′.

The Larmor's formula can thus be generalized to a covariant form:

L = L′ =
2q2

3c3
(⃗a′ · a⃗′) = 2q2

3c3
aµa

µ . (7.20)

Lorentz transformation of acceleration is di�erent for the components parallel and perpendicular
to the particle velocity:

a′∥ = γ3a∥ , a′⊥ = γ2a⊥ . (7.21)

L =
2q2

3c3

(
a′∥

2
+ a′⊥

2
)
=

2q2

3c3
γ4

(
γ2a2∥ + a2⊥

)
. (7.22)

8 Bremsstrahlung

This German term literally means deceleration radiation, it is the radiation of unbound charge decel-
erating in the Coulomb electric potential of another charge, also known as the free-free emission. The
most relevant astrophysical case is that of an electron (q = −e) interacting with an ion (q = Ze).
Because of the high mass ratio, the ion can be considered �xed.

Single interaction. A classical treatment of the problem is valid in the limit of small scattering
angle. Let v0 ≪ c be the initial velocity of the electron approaching the ion with impact parameter b.
Those two parameters de�ne the collision timescale τ = b/v0, and two energy scales: kinetic mev

2
0/2

and electrostatic potential Ze2/b.

Electron velocity change (I). As an order-of-magnitude appoximation, consider the peak Lorentz
force Fpeak = Ze2/b2 acting on time τ changes the electron velocity by roughly

∆v =
∆p

me
∼ (Ze2/b2)τ

me
=

Ze2

mebv0
. (8.1)

Electron velocity change (II). Noticing a planar symmetry of the problem, one can consider a co-

ordinate system (x, y) centered on the ion, in which the electron trajectory is R⃗e(t) = (v0t, b) = b(t/τ, 1).
The electron distance follows a universal time pro�le Re(t)/b = (t2/τ2 + 1)1/2. This corresponds to
a universal time pro�le of acceleration (parallel or perpendicular to v⃗0). In the case of perpendicular
acceleration a⊥ = apeak(Re/b)

−3, where apeak = Fpeak/me = Ze2/(meb
2), it can be shown that the

velocity change amounts to

∆v = 2apeakτ =
2Ze2

mebv0
. (8.2)

Total luminosity. The peak acceleration apeak = Ze2/(meb
2) can be put into the Larmor's formula

to �nd the peak total luminosity that a single particle can produce:

Lpeak =
2e2

3c3

(
Ze2

meb2

)2

=
2Z2e6

3m2
ec

3b4
=

2

3
cr2e

(
Ze

b2

)2

, (8.3)

where re = e2/(mec
2) is the classical electron radius.

Spectrum (I). The core of the acceleration pro�le is close to a Gaussian with dispersion ∆t = τ .
Its Fourier transform is thus close to a Gaussian with dispersion ∆ω = 2/τ . The total emitted energy
∆E ∼ Lpeakτ is now allocated into a spectral window ν ≲ ∆ν = 1/(πτ): ∆E ∼ E(ν)∆ν, hence:

dE
dν

∼ τ2Lpeak ∼ Z2e6

m2
ec

3b2v20
= cr2e

(
Ze

bv0

)2

. (8.4)
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Figure 4: Left panel: time pro�les of electron acceleration (distinguishing components parallel or
perpendicular to the electron velocity direction) in the Coulomb electric �eld of an ion at rest
(bremsstrahlung). Rigth panel: Fourier transforms of the acceleration pro�les into the frequency
space.

Spectrum (II). Using the formula for energy spectrum in the dipole approximation:

dE
dν

≃ 4q2

3c3
(∆v)2 =

16

3

Z2e6

m2
ec

3b2v20
=

16

3
τ2Lpeak . (8.5)

Example. The velocity change is signi�cant, ∆v ∼ v0, when electrostatic potential energy is compa-
rable to the kinetic energy. For thermal ionized hydrogen (Z = 1) with mev

2
0 ∼ kBT and temperature

T = 104T4 K, this corresponds to an impact parameter b ∼ Ze2/(kBT ) ∼ 2ZT−1
4 nm, collision timescale

τ = b/v0 ∼ 10−13T
−3/2
4 s, peak luminosity Lpeak,0 = Z2e6/(m2

ec
3b4) ∼ 10−6Z−2T 4

4 erg/s, and charac-

teristic frequency ∆ν ∼ 1014Z−1T
3/2
4 Hz (infrared).

Emissivity. Consider a medium consisting of ions of density ni and electrons of density ne and veloc-
ity v0. Interactions of electrons with ions happen over a broad range of impact parameter b. The cross
section for interactions at b < b′ < b+ db is 2πbdb. Over a time element dt a single electron interacts
with dNi = ni(v0dt)(2πbdb) ions, emitting radiation of spectrum E(ν) = (16/3)Z2e6/(m2

ec
3b2v20). In a

volume element dV there are dNe = ne dV electrons. Hence, the collective radiation of those electrons
can be calculated as:

dE
dν dV dt

=
32π

3

e6

m2
ec

3

Z2neni
v0

∫ bmax

bmin

db

b
. (8.6)

At a given frequency ν, only interactions with impact parameter b ≲ bmax = v0/(πν) contribute.
The minimum value of impact parameter is e�ectively bmin = h/(mev0).

An accurate result is parametrized with a Gaunt factor gff(v0, ν) such that:

dE
dν dV dt

=
32π2

3
√
3

e6

m2
ec

3

Z2neni
v0

gff . (8.7)

9 Radiation from electrons accelerated in magnetic �eld

9.1 Cyclotron radiation

Electron acceleration in uniform magnetic �eld. In the presence of uniform magnetic �eld,
e.g. B⃗ = B0ẑ, the Lorentz force on an electron with q = −e and velocity v⃗ = β⃗c is F⃗L = qβ⃗ × B⃗.
Acceleration thus a�ects only the perpendicular velocity component v⃗⊥ = v sinα, where α is the pitch
angle. Neglecting any motion along the �eld line (it yields no acceleration), in the plane perpendicular
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to B⃗, here (x, y), the electron moves along a circle with the gyroradius (or Larmor radius) RL, for
example:

r⃗(t) = RL [x̂ sin(ΩLt)− ŷ cos(ΩLt)] ≡ RLr̂ , (9.1)

v⃗⊥(t) =
dr⃗

dt
= RLΩL [x̂ cos(ΩLt) + ŷ sin(ΩLt)] ≡ v⊥v̂ ≡ β⊥cv̂ , (9.2)

a⃗(t) =
dv⃗

dt
= −RLΩ

2
L [x̂ sin(ΩLt)− ŷ cos(ΩLt)] ≡ −aLr̂ , (9.3)

where ΩL is the gyrofrequency (or Larmor frequency), which can be calculated from the ratio of
acceleration and velocity amplitudes:

ΩL =
aL
v⊥

=
FL

mev⊥
=
eβ⊥B0

mev⊥
=
eB0

mec
. (9.4)

The gyroradius can be then calculated from the velocity:

RL =
v⊥
ΩL

=
mecv⊥
eB0

. (9.5)

Cyclotron radiation. Acceleration of a non-relativistic particle in uniform magnetic �eld produces
the cyclotron radiation.

Consider an observer located at large distance R in the direction n̂ = ẑ cosΘ+ x̂ sinΘ. In order to
determine the radiation electric �eld E⃗rad ≃ ea⃗⊥/(c2R), we need to �nd the perpendicular acceleration
vector a⃗⊥ ⊥ n̂. The parallel acceleration is a∥ = a⃗ · n̂ = −aL sin(ΩLt) sinΘ. The perpendicular
acceleration is:

a⃗⊥ = a⃗− a∥n̂ = aL
[
− sin(ΩLt) cos

2 Θ, cos(ΩLt), sin(ΩLt) sinΘ cosΘ
]
. (9.6)

Angular distribution of emitted power. One can show that a2⊥ = a2L
[
1− sin2(ΩLt) sin

2 Θ
]
.

Averaging over time, we have
〈
a2⊥

〉
t
= a2L

(
1− sin2 Θ/2

)
. The angular distribution of radiation power

is a combination of isotropic and dipole components.
Recall that the Poynting �ux density corresponding to the radiation electric �eld is:

S =
c

4π
E2

rad ≃ 1

4πR2

e2

c3
a2⊥ . (9.7)

Taking the time-averaged acceleration:

⟨S⟩t ≃
1

4πR2

e2

c3
a2L

(
1− 1

2
sin2 Θ

)
. (9.8)

Total luminosity. The Larmor acceleration can be expressed in terms of classical electron radius
re = e2/(mec

2), Thomson cross section σT = (8π/3)r2e , and background magnetic energy density
uB0 = B2

0/8π:

a2L = Ω2
Lv

2
⊥ =

e2B2
0

m2
ec

2
v2⊥ =

c2

e2
r2eB

2
0v

2
⊥ =

3c2

e2
8π

3
r2e
B2

0

8π
v2⊥ =

3c2

e2
σTuB0v

2
⊥ , (9.9)

⟨S⟩t ≃
3

4πR2
cσTuB0β

2
⊥

(
1− 1

2
sin2 Θ

)
. (9.10)

Recognize that S = dE/(dtdA⊥) = dL/(R2 dΩ), the total luminosity is

L =
3

4π
cσTuB0β

2
⊥

∫
4π

dΩ

(
1− 1

2
sin2 Θ

)
. (9.11)

Substituting µ = cosΘ and dΩ = 2π dµ, one can calculate the integral to be 8π/3, hence:

L = 2cσTuB0β
2
⊥ . (9.12)

For isotropic distribution of electrons, averaging β2
⊥ = β2 sin2 θ over the pitch angle α gives

〈
β2
⊥
〉
α
=

(2/3)β2, hence:

Liso =
4

3
cσTuB0β

2 . (9.13)
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Polarization. Since acceleration is strictly harmonic in time (the frequency spectrum is discrete),
radiation for particles with the same ΩL is completely polarized.

� For an observer located along the magnetic �eld (Θ = 0), a⃗⊥ rotates in the (x, y) plane, the
polarization is strictly circular.

� For an observer located perpendicular to the magnetic �eld (Θ = 90◦), a⃗⊥ has only the y com-
ponent, the polarization is strictly linear.

9.2 Synchrotron radiation

When the charged particle (here electron) propagating in uniform magnetic �eld B⃗0 becomes relativistic
with velocity β = v/c ≲ 1 and Lorentz factor γ = (1 − β2)−1/2 ≫ 1, the Lorentz force has the same
form as in the non-relativistic case, but it causes a change of relativistic momentum p⊥ = γmev⊥
perpendicular to B⃗0. The gyrofrequency is changed to ΩL = a⊥/v⊥ = eB0/(γmec), and the gyroradius
to RL = v⊥/ΩL = γmecv⊥/(eB0).

Total emitted luminosity. In the relativistic case it is necessary to distinguish the radiative power
emitted into a unit solid angle from the radiative power received from the same solid angle. This is
because the emitting particle approaches the observer, chasing the photons emitted previously (light-
travel e�ect). Here we are concerned with the radiative power emitted in all directions, i.e., the total
emitted luminosity.

The Larmor's formula can be used in the instantaneous frame of the electronO′, using the invariance
of power.

Lem = L′
em =

2e2

3c3
(a′)2 (9.14)

Noting that the acceleration vector is strictly perpendicular to the velocity a⃗ = a⃗⊥ ⊥ v⃗ (in O′, a⃗′ is
perpendicular to the velocity of O), the Lorentz transformation of acceleration is a′⊥ = γ2a⊥. One can
write that:

(a′)2 = γ4a2⊥ = γ4Ω2
Lv

2
⊥ = γ2

e2B2
0

m2
ec

2
v2⊥ (9.15)

Compared with the non-relativistic case, the luminosity will be multiplied by γ2 factor:

Lsyn(α) = 2cσTuB0γ
2β2 sin2 α , Lsyn,iso =

4

3
cσTuB0γ

2β2 . (9.16)

Cooling time scale. The cooling time scale τcool is the ratio of electron energy to the emitted
luminosity:

τcool,syn =
γmec

2

Lsyn(α)
=

1

4γβ2 sin2 α

mec
2

(4π/3)r3e

1

uB0

re
c

≡ 1

4γβ2 sin2 α

ue
uB0

τe , (9.17)

where τe ≡ re/c ≃ 0.94×10−23 s is the classical electron light crossing time scale, and ue = mec
2/[(4π/3)r3e ] ≃

0.87 × 1031 erg/cm3 is the classical electron energy density. For α = 90◦ and β ≃ 1, one has
τcool,syn ≃ 0.65γ−1 (uB0[erg/cm

3])−1 yr.

Relativistic beaming. For relativistic particle motion, the expression for radiation electric �eld
E⃗rad includes the κ−3 term, where κ = 1− n̂ · β⃗ represents time retardation. Introducing the emission
angle θem between the emission direction (line of sight) n̂ and particle velocity β⃗ = v⃗/c, one �nds
κ = 1 − β cos θem. This κ ≪ 1 only when both β ≃ 1 and cos θem ≃ 1. In the relativistic limit,
β ≃ 1 − 1/(2γ2). In the limit of small angles (θem ≪ 1), cos θem ≃ 1 − θ2em/2. Taken together, they
yield κ ≃ (1 + γ2θ2em)/(2γ

2). Radiation is thus strongly beamed into a cone θem ≲ 1/γ around the
instantaneous electron velocity.
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Characteristic time scale. A relativistic electron that gyrates in the magnetic �eld with frequency
ΩL emits synchrotron radiation into a very narrow cone sweeping its sky. An observer that is swept
by such beamed radiation would detect a very narrow pulse. Consider the case of perpendicular pitch
angle α = 90◦ and observer located at n̂ = x̂. Let the particle trajectory and velocity be as before:

r⃗(t) = RL[x̂ sin(ΩLt)− ŷ cos(ΩLt)] , (9.18)

v⃗(t) = v[x̂ cos(ΩLt) + ŷ sin(ΩLt)] . (9.19)

The emission angle is θem(t) = ΩLt. Introduce two emission moments with θem(tem,1) = −1/γ and
θem(tem,2) = 1/γ, hence tem,1 = −1/(γΩL) and tem,2 = 1/(γΩL). The time it takes to emit a single
pulse along n̂ is ∆tem = tem,2 − tem,1 = 2/(γΩL). However, at tem,1 the electron was at xem,1 =
RL sin(−1/γ) ≃ −RL/γ, and at tem,2 the electron was at xem,2 ≃ RL/γ, the di�erence being ∆xem ≃
2RL/γ = 2v/(γΩL). The observed time scale is shortened by the light travel e�ect:

∆tobs = ∆tem − ∆xem
c

=
2(1− β)

γΩL
≃ 1

γ3ΩL
. (9.20)

Characteristic frequency. The extreme shortness of observed pulses means that the spectrum can
extend into very high frequencies. Detailed synchrotron spectrum for arbitrary pitch angle α has a
characteristic frequency of ωc = (3/2)γ3ΩL sinα.

Spectrum and polarization. Because of the relativistic beaming, synchrotron radiation is not
harmonic like cyclotron, but consists of characteristic pulses that result in a continuous spectrum.
Detailed calculation of the spectrum distinguishes two polarizations for the radiation electric �eld:
parallel or perpendicular to the magnetic �eld projected onto the plane normal to the line of sight n̂:

dL⊥
dω

=

√
3e3B sinα

4πmec2
[F (x) +G(x)] , (9.21)

dL∥
dω

=

√
3e3B sinα

4πmec2
[F (x)−G(x)] , (9.22)

with special kernel functions of x = ω/ωc:

F (x) = x

∫ ∞

x

dξ K5/3(ξ) , G(x) = xK2/3(x) . (9.23)

The function F (x) represents the spectral shape of the total emission, and the function G(x) represents
the spectral shape of the polarized emission. The integral of F (x) is

∫∞
0

dxF (x) = 8π/(9
√
3), which

makes the above spectra consistent with the L(α) function.
Because G(x) < F (x), synchrotron radiation is linearly polarized with polarization degree Π(x) =

G(x)/F (x). The polarization degree ranges from 50% in the low-frequency limit ω ≪ ωc to almost
100% in the high-frequency limit ω ≫ ωc.

Radiation from non-thermal particle distribution. Synchrotron radiation is most often asso-
ciated with ultra-relativistic particles having a broad non-thermal energy distribution. Of particular
interest are power-law distributions N(γ) ∝ γ−p. The collective synchrotron radiation of such particles
has a power-law spectrum L(ω) ∝ ω−(p−1)/2 and polarization degree Π = (p+ 1)/(p+ 7/3).

9.3 Curvature radiation

It is the radiation of relativistic particles propagating along curved magnetic �eld lines. The key
parameter to determine the acceleration is the curvature radius Rc, which for velocity v determines
acceleration (perpendicular to the velocity) a⊥ = v2/Rc. The characteristic radiation frequency is ωc =
(3/2)γ3(v/Rc), and the total luminosity is L = (2/3)ce2(γ4β4/R2

c). Compare this with the luminosity
of synchrotron radiation, which can be presented in the form Lsyn(α) = (2/3)ce2(γ4β4 sin4 α/R2

L). The
spectrum of curvature radiation uses the same kernel function F (x).
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Figure 5: Kernel functions for the total spectrum F (x) (red) and polarized spectrum G(x) (blue) of syn-
chrotron emission, of the argument x = ω/ωc with the characteristic frequency ωc = (3/2)γ3ΩL sinα.
The green line shows the polarization degree Π(x) = G(x)/F (x).

10 Radiation scattering o� electrons

10.1 Leptonic radiative processes

Of particular interest to astrophysical radiative processes are interactions between radiation and the
lightest charged particles � electrons and positrons. Low mass (∼ 2000 times lighter than proton)
and elementary structure (as far as one can measure) make electrons more e�cient emitters and more
sensitive to radiative force. Radiative processes based on electrons (also positrons, muons) are known
as leptonic.

In the quantum approach, electron interacts with photons. There can be just three basic types of
such interaction:

� scattering : an electron interacts with a photon, leading to exchange of energy and momentum;

� annihilation: an electron interacts with a positron, annihilating into two energetic photons;

� pair creation: two energetic photons create a pair of electron and positron.

Note that a free electron cannot emit or absorb a photon, as this would violate conservation of energy
and momentum.

10.2 Thomson scattering

The classical approach to the interaction between radiation and a charged particle is known as the
Thomson scattering.

Consider an electron interacting with a plane electromagnetic wave propagating along k̂ = ẑ. If the
electron is initially at rest, it only feels an oscillating electric �eld. Let the wave be linearly polarized,
and consider speci�cally Ex(t) = E0 cos(ωt). The electron feels a Lorentz force Fx(t) = −eEx(t) =
−eE0 cos(ωt), which causes acceleration ax(t) = Fx(t)/me = −a0 cos(ωt) with a0 = eE0/me. By
integration over time, this acceleration is consistent with velocity vx(t) = −v0 sin(ωt) with v0 =
eE0/(meω), and trajectory x(t) = x0 cos(ωt) with x0 = eE0/(meω

2).

Radiation electric �eld. The accelerated electron is a source of electromagnetic radiation. As long
as its motion is non-relativistic, at distant position R⃗ = RR̂ the radiation �eld is a dipole with an
amplitude:

Erad ≃ ea0
c2R

sinΘ =
e2

mec2
E0

R
sinΘ , (10.1)

where Θ = ∠(R̂, ẑ) is the scattering angle. Note that e2/(mec
2) is a length known as the classical

electron radius re = 2.818× 10−13 cm, hence Erad/E0 = (re/R) sinΘ.
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Total luminosity. For the Larmor's formula, we can use a time average of a(t)2, which is
〈
a2
〉
t
=

a20/2:

L =
2e2

3c3
〈
a2
〉
t
=

e4

3m2
ec

3
E2

0 =
r2e
3
cE2

0 =
8πr2e
3

cE2
0

8π
≡ σT ⟨S0⟩t , (10.2)

where σT = (8π/3)r2e ≃ 6.65 × 10−25 cm2 is the Thomson cross section, and ⟨S0⟩t = cE2
0/8π is the

time-averaged incident Poynting �ux density. Thus, in order to sustain emission, the electron absorbs
the incident electromagnetic energy as if having a cross section of σT.

Polarization. Let us specify the scattered emission direction as R̂ = ẑ cosΘ+ x̂ sinΘ. We also need
to specify an ortonormal basis including R̂. We can choose ŷ′ = ŷ and x̂′ = ŷ′ × R̂ = x̂ cosΘ− ẑ sinΘ.
For an acceleration amplitude a⃗ = axx̂, the component perpendicular to R̂ is a⊥ = a⃗ · x̂′ = ax cosΘ,
which implies the time-averaged scattered Poynting �ux density

Sx =
c

8π
E2

rad =
e2a2x

8πc3R2
cos2 Θ . (10.3)

This component is anisotropic in the (x, z) plane, with maxima for Θ = 0, 180◦ and no emission for
Θ = ±90◦.

On the other hand, consider a di�erent polarization of the incident wave resulting in acceleration
amplitude a⃗ = ay ŷ. The perpendicular component is then a⊥ = a⃗ · ŷ′ = ay, and

Sy =
e2a2y

8πc3R2
. (10.4)

This component is isotropic in the (x, z) plane.
We can identify the total and polarized scattered intensities as:

Itot = Sx + Sy =
e2

8πc3R2
(a2x cos

2 Θ+ a2y) , (10.5)

Ipol = |Sx − Sy| =
e2

8πc3R2
|a2x cos2 Θ− a2y| . (10.6)

The polarization degree is thus:

Π =
Ipol
Itot

=
|a2x cos2 Θ− a2y|
a2x cos

2 Θ+ a2y
. (10.7)

In the case of unpolarized incident wave, we have a2x = a2y, and

Π =
1− cos2 Θ

1 + cos2 Θ
. (10.8)

10.3 Compton scattering

The quantum approach to interaction between radiation and an electron is known as the Compton
scattering.

Consider an electron initially at rest interacting with an incident photon of momentum p⃗1 =
(hν1/c)ẑ. The total energy and momentum of this system is:

E = hν1 +mec
2 , pz =

hν1
c
. (10.9)

Absorption solution. If one would like to assign this energy and momentum to the electron with
recoil velocity v⃗2 = v2ẑ ≡ β2cẑ, Lorentz factor γ2 = (1 − β2

2)
−1/2, and dimensionless 4-velocity

u2 = γ2β2 = (γ22 − 1)1/2, one would need to satisfy E = γ2mec
2 and pz = u2mec, which leads to an

equation

ϵ1 ≡ hν1
mec2

= γ2 − 1 = u2 , (10.10)

which only has a trivial solution v2 = 0 and ν1 = 0. For a similar reason, a free electron cannot emit
a photon.
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Scattering solution. The incident photon cannot be absorbed, but it can be scattered at arbi-
trary angle Θ. Let the scattered photon have a momentum p⃗2 = (hν2/c)(ẑ cosΘ + x̂ sinΘ). We also
need to account for electron recoil with momentum p⃗e,2 = γ2mev2(ẑ cosΘe + x̂ sinΘe). Introducing
dimensionless photon energy ϵi = hνi/mec

2, the conservation of energy and momentum now involves
3 equations:

E
mec2

= ϵ1 + 1 = ϵ2 + γ2 , (10.11)

pz
mec

= ϵ1 = ϵ2 cosΘ + u2 cosΘe , (10.12)

px
mec

= 0 = ϵ2 sinΘ + u2 sinΘe . (10.13)

The 3 unknowns are ϵ2, v2 (or γ2 or u2), and Θe. The electron scattering angle can be eliminated
from the x-momentum as sinΘe = −(ϵ2/u2) sinΘ. Substituting to the z-momentum yields u22 =
ϵ21 + ϵ22 − 2ϵ1ϵ2 cosΘ. On the other hand, the energy equation gives γ22 = (ϵ1 − ϵ2 + 1)2. After
eliminating u2, the solution for scattered photon energy is:

ϵ2 =
ϵ1

1 + ϵ1(1− cosΘ)
. (10.14)

Thomson and Klein-Nishina regimes. The energy change ϵ2 − ϵ1 is negligible for ϵ1 ≪ 1 or
hν1 ≪ mec

2 (the classical limit corresponding to the Thomson scattering). Once the incident photon
energy becomes comparable to the electron rest energy of mec

2 = 511 keV (soft gamma rays), its
energy will be reduced upon scattering (ϵ2 ≤ ϵ1). For head-on scattering (Θ = 180◦), ϵ2 = ϵ1/(1+2ϵ1).

An energetic gamma-ray photon with ϵ1 ≫ 1 can in principle deposit most of its energy to the
electron, but it would also be increasingly more likely to produce electron-positron pairs. This is
known as the Klein-Nishina regime, in which the scattering cross section σKN becomes systematically
lower than σT.

10.4 Inverse Compton scattering

Astrophysical electrons are often highly energetic, even ultra-relativistic with Lorentz factors γ ≫ 1.
We have direct evidence for this from detections of cosmic rays (they are just a minor ingredient, but
very important at ∼ GeV energies) and solar energetic particles. Considered in the electron's rest
frame, this process is exactly the same Compton scattering, however, to understand the results in the
frame of astrophysical interest (could be a source frame like AGN black hole, but also the co-moving
frame of a relativistic jet), both the incident and scattered photons need to be Lorentz-transformed.

Reference frames. In a reference frame O, consider an ultra-relativistic electron with γ = (1 −
β2)−1/2 ≫ 1 propagating along ẑ. The electron rest frame is denoted as O′.

Incident photon. Consider an incident photon, which inO has momentum p⃗1 = p1(ẑ cos θ1+x̂ sin θ1)
with p1 = E1/c = hν1/c. In O′, the momentum of this photon is likewise p⃗′1 = p′1(ẑ cos θ

′
1 + x̂ sin θ′1).

The parameters p′1 and µ′
1 = cos θ′1 are related to p1 and µ1 = cos θ1 by Lorentz transformation:

p′1 = γ(1− βµ1)p1 ≡ D1p1 , µ′
1 =

µ1 − β

1− βµ1
, (10.15)

where a Doppler factor D1 has been introduced. Those are the relativistic Doppler and aberration
e�ects, respectively. The aberration law implies also that dΩ′

1 = (dµ′
1/dµ1) dΩ1 = dΩ1/D2

1.

Scattered photon. Now consider a scattered photon in O′. For simplicity, let us con�ne the problem
to the (x̂, ẑ) plane, so that the scattered photon momentum is p⃗′2 = p′2(ẑ cos θ

′
2+ x̂ sin θ

′
2). This photon

is transformed to O using reversed Lorentz transformation:

p2 = γ(1 + βµ′
2)p

′
2 , µ2 =

µ′
2 + β

1 + βµ′
2

. (10.16)

19



Example. As a typical example, consider in O an incident photon with θ1 ∼ 90◦, so that µ1 ∼ 0. In
O′, relativistic aberration results in µ′

1 ≃ −β, hence θ′1 ≃ 180◦ − 1/γ; and the photon momentum is
relativistically boosted p′1 ≃ γp1. For scattering in the Thomson regime, p′2 ≃ p′1. For the scattering
angle, let us take Θ′ ∼ 90◦. Then, the scattered photon would have θ′2 = θ′1 ± Θ′ ∼ ±90◦, hence
µ′
2 ∼ 0. Transformation back into O yields p2 ≃ γp′2 and µ2 ≃ β or θ2 ≃ 1/γ, closely along the electron

velocity. The combined momentum boost is p2 ≃ γp′2 ≃ γp′1 ≃ γ2p1.

Luminosity. The power of radiation scattered o� a single relativistic electron can be �rst evaluated
in its rest frame O′. In the Thomson regime, the energy of scattered photons does not change, hence the
power of scattered radiation equals the power of incident radiation. The number of incident photons
interacting with an electron per unit time dt′ is dN ′

1 = n′1 dV
′ = n′1σTcdt

′, where n′1 is their number
density. This scaling is independent of the photon energy and direction (momentum). However, the
amount of incident energy depends on the photon energy distribution:

dE ′
1

dϵ′1
= ϵ′1mec

2 dN ′
1

dϵ′1
= cσTmec

2 ϵ′1
dn′1
dϵ′1

dt′ . (10.17)

Recall that the phase space distribution of photons f = dN/(d3r⃗ d3p⃗) = dn/d3p⃗ is Lorentz invariant.
This means that dn/(ϵ2 dϵdΩ) is Lorentz invariant. Since ϵ′/ϵ = D(µ) and dΩ′/dΩ = 1/D(µ)2, then
dn/dϵ is also Lorentz invariant. One can now write:

dE ′
1

dt′
= cσTmec

2

∫
dϵ′1 ϵ

′
1

dn1
dϵ1

. (10.18)

Consider that the incident radiation is unidirectional with �xed µ1, then one can write that dϵ′1 =
D1(µ1) dϵ1, so that:

dE ′
1

dt′
(µ1) = cσTD1(µ1)

2

[
mec

2

∫
dϵ1 ϵ1

dn1(µ1)

dϵ1

]
≡ cσTγ

2(1− βµ1)
2 urad(µ1) , (10.19)

where we introduce the radiation energy density urad(µ1). The average value of the explicitly anisotropic
term is

〈
(1− βµ1)

2
〉
Ω1

= 1 + β2/3 ≃ 4/3. Hence, in the case of incident radiation isotropic in O, i.e.,
urad independent of µ1, once has

LIC,iso =

〈
dE ′

1

dt′

〉
Ω1

=
4

3
cσTγ

2urad , (10.20)

Analogy with the synchrotron radiation. Recall that for the synchrotron radiation, the pitch-
angle averaged luminosity for an ultra-relativistic electron is Lsyn,iso ≃ (4/3)cσTγ

2uB. This formula is
strikingly similar to the one for inverse Compton luminosity, with magnetic energy density uB playing
the role of incident radiation energy density urad. This similarity can be used directly in the studies
of blazars, in which the same electrons can produce synchrotron radiation to explain the low-energy
non-thermal spectral component and upscatter various radiation �elds by the inverse Compton process
to explain the high-energy spectral component. The luminosity ratio (Compton dominance) can be
used to constrain relative energy densities in the emitting region (within a relativistic jet frame O′):

LIC

Lsyn
=
u′rad
u′B

. (10.21)

Quantum picture of the synchrotron radiation. This suggests a deeper similarity between these
two processes. In the QED, synchrotron emission can be interpreted as the inverse Compton scattering
of virtual photons associated with the magnetic �eld. The characteristic frequency of the synchrotron
radiation, ωc ∼ γ2Ωc with Ωc = eB/mec the cyclotron frequency (non-relativistic Larmor frequency),
suggests that those photons have energies ∼ ℏΩc. One can also evaluate that synchrotron radiation
is equivalent to the Thomson scattering, unless γℏΩc ∼ mec

2. Without the γ factor, this condition
de�nes the critical magnetic �eld strength Bcr = m2

ec
3/(ℏe) ≃ 4.4 × 1013 G, which is exceeded in the

magnetars.
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11 Radiation propagating through plasmas

When an electromagnetic wave propagates through a plasma (e.g., interstellar medium), charged par-
ticles are accelerated by the radiation electric �eld. This classical description is similar to the problem
of Thomson scattering, but now we consider many charges. Once again, electrons are most a�ected
due to their low mass.

11.1 Dispersion

Consider a linearly polarized wave propagating along k̂ = ẑ with electric �eld Ex(t, z) = E1 exp(iωt+
ikz). This electric �eld causes electron acceleration ax(t, z) = −eEx/me and velocity vx(t, z) =
ieEx/(ωme), out of phase with ax(t, z). Motions of electrons of number density ne contribute to
electric current jx(t, z) = −enevx = −ie2neEx/(ωme). This electric current contributes to the x
component of the Ampere's law:

c(∇⃗ × B⃗)x = 4πjx + ∂tEx , (11.1)

−ickBy = −4π
ie2neEx

ωme
+ iωEx , (11.2)

−ckBy =

(
−4πe2ne/me

ω2
+ 1

)
ωEx . (11.3)

The term 4πe2ne/me ≡ ω2
p is the squared plasma frequency, a function only of electron density: ωp ≃

60n
1/2
e,0 kHz. The magnetic �eld component can be substituted from the Faraday's law By = −(kc/ω)Ex

to obtain a dispersion relation:
ω2 = k2c2 + ω2

p . (11.4)

Note the following implications:

� The phase speed is vph = ω/k ≡ c/nr > c, where

nr =

[
1 +

(ωp

kc

)2
]−1/2

=

[
1−

(ωp

ω

)2
]1/2

< 1 (11.5)

is the index of refraction.

� The group speed is vgr = ∂ω/∂k = cnr < c. Information (e.g., pulses of pulsars, fast radio bursts)
travelling with the group speed will be dispersed and delayed by

∆t(ω) =

∫
R

dr

vgr(ω)
− R

c
=

1

c

∫
R

dr

nr(ω)
− R

c
≃ 1

2c ω2

∫
R

drω2
p =

2πe2

mec ω2

∫
R

dr ne ≡
2πe2

mec ω2
DM ,

(11.6)
with the dispersion measure DM ≡

∫
R
dr ne; the linear approximation made in the limit of

ω ≫ ωp.

� For ω < ωp, k becomes imaginary, which means that electromagnetic wave is exponentially
damped on length scale c/(ω2

p −ω2)1/2. In the limit of ω ≪ ωp, this length scale is known as the
skin depth dp = c/ωp.

11.2 Faraday Rotation

Let us extend the above problem by including uniform magnetic �eld along the wavevector: B⃗0 =
B0k̂ = B0ẑ. The wave electric �eld can be parametrized by amplitude and polarization angle E⃗1 =
E1(x̂ cosχ + ŷ sinχ) ≡ E1 exp(iχ), either of which may have a time dependence of ∝ exp(iωt). The

electron velocity β⃗ is now governed by the Lorentz force F⃗L = −e(E⃗1 + β⃗ × B⃗0) = mea⃗ = iωmecβ⃗.

Noting that β⃗ × B⃗0 ≡ −iB0β⃗, one obtains:

− E⃗1

B0
+ iβ⃗ =

ω

Ωc
iβ⃗ , (11.7)

where the cyclotron frequency Ωc = eB0/(mec) was substituted.
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The solution is:

β⃗ =
Ωc/ω

1− Ωc/ω

iE⃗1

B0
, (11.8)

where we anticipate that |ω/Ωc| > 1.
Note that di�erent signs of B0 or ω result in solutions of two di�erent amplitudes. Fixing B0 > 0

and hence Ωc > 0, two signs of ω correspond to the 2 fundamental circular polarizations. Note that
ω combines the time dependences of amplitude E1 and polarization angle χ. For circular polarization,
E1 is constant and χ = χ0 + ωt. For linear polarization, χ is constant and E1 ∝ exp(iωt), which is
nevertheless equivalent to a combination of two opposite circular polarizations.

We now need to combine the Ampere's law with the Faraday equation (note that ∇⃗ × B⃗1 =

ik(ẑ × B⃗1) ≡ ik(−i)B⃗1 = kB⃗1, and likewise ∇⃗ × E⃗1 ≡ kE⃗1):

kcB⃗1 = 4πj⃗ + iωE⃗1 , (11.9)

kcE⃗1 = −iωB⃗1 , (11.10)

(k2c2 − ω2)iE⃗1 = 4πωj⃗ , (11.11)

Substituting j⃗ = −ceneβ⃗:

(k2c2 − ω2)
iE⃗1

B0
= −ω 4πe

2ne
me

mec

eB0
β⃗ = −ω2

p

ω

Ωc
β⃗ . (11.12)

Substituting β⃗, we obtain a dispersion relation and expression for phase speed vph = ω/k:

k2c2 − ω2 = − ω2
p

1− Ωc/ω
, (11.13)

(c/vph)
2 = 1− (ωp/ω)

2

1− Ωc/ω
. (11.14)

We now consider a limit of ω ≫ ωp,Ωc. The linearized phase speeds for ω = ±ω0 are:

vph,±
c

≃ 1 +
ω2
p

2ω2
0

+
Ω2

c

2ω2
0

∓ ω2
pΩc

2ω3
0

+ ... (11.15)

The phase speed di�erence is
∆vph
c

≃ ω2
pΩc

ω3
0

. (11.16)

Over distance ∆z this results in a phase di�erence (substituting k0 = ω0/c = 2π/λ0):

∆ϕ =
∆vph
c

k0 ∆z ≃
ω2
pΩc

cω2
0

∆z =
4πe3

m2
ec

2(2πc)2
λ20 neB0 ∆z . (11.17)

This phase di�erence corresponds to twice the rotation of the polarization angle:

∆χ =
∆ϕ

2
= λ20

e3

2πm2
ec

4
neB0 ∆z ≡ λ20 RM , (11.18)

where RM stands for the rotation measure. Over long astrophysical distances r, electron density ne
and magnetic �eld component B∥ parallel to the line of sight (and positive towards the observer) may
be functions of r. Hence, astrophysical rotation measures are line-of-sight integrals:

RM =
e3

2πm2
ec

4

∫
R

dr neB∥ . (11.19)

For uniform distributions of RM (Faraday screens), rotation of polarization vectors scales with λ2.
Faraday rotation is a very important e�ect in radio astronomy. On one hand, it makes di�cult

measuring the true polarization of radio sources; on the other hand, it allows to estimate the strengths
and distributions of magnetic �elds in extended sources, especially across the Milky Way.
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12 Absorption processes

Each emission process is associated with an absorption process. In particular, bremsstrahlung is
associated with the free-free absorption, and synchrotron radiation is associated with the synchrotron
self-absorption. In general, absorption becomes important at low frequencies, at which the individual
processes of photon emission (spontaneous or stimulated) and photon absorption become more probable
and more balanced. Below certain characteristic frequency, a particular source may become optically
thick to a particular absorption process. In such conditions, a thermodynamic equilibium can be
achieved, at least between photons of given frequency and electrons of corresponding characteristic
energy. In the case of free-free emission, the optically thick spectrum hardens to F (ν) ∝ ν2, consistent
with the Rayleigh-Jeans thermal spectrum. In the case of synchrotron self-absorption, the optically
thick spectrum hardens to F (ν) ∝ ν5/2.

Figure 6: Left: schematic spectrum of the bremsstrahlung emission with free-free absorption (Fig
6.4 in Longair, 2003). Right: schematic spectrum of the synchrotron emission with synchrotron self-
absorption at low frequencies (Fig 8.12 in Longair, 2003).

13 Pair production and annihilation

Basic interactions between electrons/positrons and photons (interaction of two particles resulting in
two particles) include: (1) Compton scattering, (2) photon-photon production of electron-positron pair,
and (3) annihilation of electron and positron into a pair of photons. Pair production and annihilation
involve gamma-ray photons with energy exceeding the rest energy of electron/positron hν ≥ mec

2.
Positrons can also be produced in other processes, including β decays and pair production in strong
electromagnetic �elds. Positrons are the most common form of antimatter in the Universe.
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Figure 7: Cross section for the photon-photon pair production process, normalized to the Thomson
cross section. Thin lines are for �xed cosine µ = cos(θ) of the angle θ between incident photons. The
thick line shows the average cross section for isotropic distribution of target photons.
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14 Hadronic processes

Radiation is produced by accelerating charged particles, this course has been focused on the electrons
(and positrons) as the lightest stable abundant charges. However, heavier charges can also contribute
to the cosmic radiation. Protons (baryons) and other atomic nuclei are abundant and stable, can be
accelerated to extremely high energies (∼ 1020 eV), making up most of the cosmic rays. They can
produce radiation by acceleration in magnetic �elds (proton synchrotron) or by colliding with other
particles, which results in cascades (showers) of secondary particles including leptons, unstable mesons
(mostly charged or neutral pions), which in turn produce radiation. Baryons are mesons are collectively
known as the hadrons, hence the overall term hadronic processes.

14.1 Proton synchrotron

Let us compare a relativistic proton with Lorentz factor γp with an electron with the same energy
Ee = γemec

2 = γpmpc
2 = Ep. Such electron is even more relativistic with γe = (mp/me)γp. The

Larmor frequency of the proton ΩL,p = eB0/(γpmpc) is exactly the same as for the electron. Accel-
eration in the reference frame of interest, perpendicular to the velocity vector, is ap,⊥ = ΩL,pvp,⊥ ∼
ΩL,pc, comparable to that for the electron. However, acceleration in the rest frame of the proton
is a′p = γ2pap,⊥. In the Larmor's formula for total luminosity, we use squared rest-frame acceleration
Lsyn,p = (2/3)(e2/c3)γ4pΩ

2
L,pv

2
p,⊥. Hence, for relativistic proton and electron of equal energy, the ratio of

synchrotron luminosities is Lsyn,p/Lsyn,e ≃ (γp/γe)
4 = (mp/me)

−4. Correspondingly, the synchrotron
cooling time scale for a proton will be longer by factor (mp/me)

4, and its characteristic frequency will
be ωc,p/ωc,e = (γp/γe)

3 = (mp/me)
−3. Because the luminosity per particle is so much lower, proton

synchrotron process is much less e�cient energetically than electron synchrotron. This is generally
true for all hadronic processes. Nevertheless, in the presence of extremely energetic protons they may
be important and are being considered. An important motivation is to explain observations of highly
energetic neutrinos (e.g. by the IceCube experiment) inferred to have an astrophysical origin.
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