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1 Electromagnetic radiation

Wave-particle duality. Electromagnetic radiation can be described classically as electromagnetic
waves or quantum-mechanically as a collection of photons.



Electromagnetic wave. Maxwell’s equations in Gaussian cgs units:
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where E is the electric field, B is the magnetic field, p, is the electric charge density, fis the electric
current density.
In vacuum (p, = 0 and j = 0), those equations become symmetric:
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Their symmetry allows to obtain identical wave equations:
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A solution of the form E = Egexp(iwt + ik - ¥) with angular (ordinary) frequency w = 27v and
wavevector k yields the dlspersmn relation w? = k2c? or wavelength A=2n/k = 27rc/w = ¢/v, and
ties the amplitude vectors with k= k/k BO Eo x k and Eo = fBO X k hence E | B and Ey = By.

Photons. Photons are massless particles propagating at constant speed ¢ = A\v — the speed of light
in vacuum®'. A photon can be described by momentum 7 = pk which corresponds to energy e = pc,
which is related to the wave frequency as € = hv = hw, with h = 2k — the Planck constant?.

The parameters A, v or w, and € describe the electromagnetic spectrum, from radio waves to gamma
rays.
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Figure 1: Specific intensity of the cosmic radiation background (Cooray 2016, Royal Society Open
Science, 3, 150555).

2 Radiation measures

Treated as a collection of electromagnetic waves, radiation can be measured by integrating their energy
and momentum densities. At any fixed point 7, the time-averaged energy density of electromagnetic

le =2.99792458 x 10'%cm/s
2h = 6.62607015 x 10~ 27erg/s



wave is
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and the time-averaged energy flux (momentum times ¢) density (Poynting flux) is
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Treated as a collection of photons, radiation can be measured by counting the photons number N
or by integrating their combined energy € =", ;| y €.

Phase space element. A photon can be located in the 6-dimensional phase space (7, 7). The element
of position space (volume) can be decomposed as dV = d37 = dA, cdt with dA, the area element
perpendicular to the propagation direction k. The element of momentum space can be decomposed as
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with dQ the solid angle element®. Hence, the element of phase space can be written as d37d3p =
(h3v?/c?)dA, dt dvdQ.
Specific intensity. Consider a measure of radiation energy per phase space element:
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where I, = d€/(dA, dtdvdQ?) is the specific intensity, a fundamental radiation measure in astro-
physics, from which other measures can be obtained by integration.

Total intensity. The total (bolometric) intensity is the integral of specific intensity over all fre-
quencies I = [dv 1, = d€/(dA; dtd?). Other measures can also be defined in the specific or total
versions.

Lorentz invariance. A phase space element is invariant to Lorentz transformation. For a boost
along z by Lorentz factor T', the length contraction dz = da’/T" is compensated by the momentum
boost dp, = I'dp’,. Since d€ = edN = hvdN, and the number of photons dN is invariant, I,/v? is
also invariant.

Energy density. The energy density is a measure of radiation energy per volume element:

d€ 1 d&
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It is thus equivalent to the intensity () integrated over all solid angles: u = [, dQI(Q)/c.

Energy flux (density). The energy fluz density is a measure of radiation energy crossing a surface
element (in particular of a source or a detector) in unit time:

dé

Such radiation may consist of various beams of intensity I(2) making angles 6 with the unit vector 7
normal to the surface element. For each such beam, the volume occupied by photons that cross the
surface over time range dt is dV () = ¢dt dA cosf. Noting that d€(Q) = I(Q)dV () dQ/c, one finds:

- eEQ) [(Q)dv(Q)/e /
F = o dgm = Aﬂ— dﬂw = . dQI(Q) COSH. (27)

3For example, in spherical coordinates (r, 6, ¢) a solid angle element anchored at r = 0 is dQ = sinf0df d¢ = dude,
where p = cos 6.




Pressure. Let P, =) ,p1 ;= ), € cosbf;/c be the combined momentum of radiation normal to a
given surface. One can define the momentum flux (density) as

dP,

v /47r dQ () cos?f/c. (2.8)
The momentum flux density is closely related to the radiation pressure P,,q exerted on a medium,
depending on how they interact. If the radiation is completely absorbed, Pr.q = Fp; if the radiation is
completely reflected, Paq = 2F,.

Isotropic radiation. Let I(2) = I. The energy density is u = 47l /c, the energy flux density is
F = 0, and the momentum flux density is F}, = 47I/3c = u/3. One can also calculate the emergent

energy flux density (one-way flux, i.e., p=cosf >0): F = [, dQIcosd =2nl fol dpp =xl.

Unidirectional radiation. Let I(Q) = I§(0)/(2nsinf), so that v = (I/2nc) [dOd¢d(0) = I/c.
The energy flux density is F = Ifo7T df§(0) cosf = I, and the momentum flux density is F, =
(I/c) [y d0d(0) cos® @ = I/c. Hence, in this case u = F/c = F, = I/c.

Luminosity. The luminosity (energy flux, power) is a measure of radiation energy emitted by a
source in unit time: L = d€/dt. Luminosity can be calculated by integrating the emitted energy flux
over the source surface: L = [ dA F(A). For a spherical source of radius R and uniform emission flux:
L = 47 R?F. In such case, the flux measured at arbitrary distance r > R is F(r) = L/(4mr?) (inverse
square law).

True luminosities of astrophysical sources are observationally inaccessible. The best one can do is
to estimate the apparent luminosity Ly, = 4nd? Fops from the observed energy flux density F,ps and
the luminosity distance dy,.

3 Spectrum of electromagnetic wave

The spectral distribution of radiation measures can be readily explained in terms of counting photons
of various energies. When unidirectional radiation is defined in terms of an electromagnetic wave, its
instantaneous intensity (energy flux density, Poynting flux density) is

&€ ¢
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dtdA,  4Arx (*) (3.1)

The electric field E(¢), measured for an extended period of time, can be Fourier transformed into the
frequency space, e.g.:

Bw) = % [ " at expliwt) E(t). (3.2)

The total energy of such radiation per unit area can be matched between the spaces of time and
freugency:
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The middle transition is due to the Parseval’s theorem, and the last transition is due to elimination by
symmetry of negative frequencies (since E is complex). The spectrum of radiation energy deposited
over time per unit area is thus:
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4 Polarization

The dispersion relation for electromagnetic wave in vacuum allows two solutions: w = +kc. At any
fixed position, e.g. ¥ = 0, one can write the general complex solution as (allowing for different phases
at t = 0):

E = Ey exp(ikct + i¢1) + Eq exp(—ikct — ics) . (4.1)



The measured electric field is the real part:
Re(E) = E; cos(kct + ¢1) + Ey cos(kct + ¢) (4.2)

What this describes in general is an ellipse of arbitrary orientation. This ellipse can be traced in two
directions (from the observer point of view): clockwise (right-handed polarization; positive helicity)
or counterclockwise (left-handed polarization; negative helicity). An ellipse may degenerate to a line
(linear polarization) or to a circle (circular polarization).

Stokes parameters. Without losing generality, an observer may choose a coordinate system (z,y)
and re-define the electric field amplitudes such that El = Fiz and Eg = F5y. Then, a coherent
radiation signal can be determined by measuring 4 scalar parameters: Ej, Fa, ¢1,¢2. Those can be
used to define the 4 Stokes parameters:

I = E}+E2 (4.3)
Q = E-E; (44)
U = 2E;Escos(¢1 — ¢2) (4.5)
V = 2E;1Essin(¢1 — ¢2) (4.6)

On the other hand, an arbitrary ellipse can be parametrized in terms of major axis amplitude
E{ > 0, minor axis amplitude F)} (|E}| < E{) and position angle of the major axis x. The Stokes
parameters become:
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Linear and circular polarization. Note two important limits:
e E, =0 (V =0): the ellipse degenerates to a line, this is the case of linear polarization.

e F),=+F] (Q=U =0): the ellipse degenerates to a circle, this is the case of circular polarization.
The sign of EY determines the sign of V', hence the sign of helicity).

Hence, I measures the total intensity, \/Q? + U? the linearly polarized intensity with the electric
vector polarization angle (EVPA) y = arctan2(U, Q)/2, V the circularly polarized intensity.

Polarization degree. Note that the above Stokes parameters satisfy I = Q% + U? + V? (not inde-
pendent, since ¢1, ¢ — ¢ —2), meaning that a coherent monochromatic radiation signal is completely
polarized. A partial polarization always results from incoherence (e.g., extended source, finite band-
width, imperfect detector). In general, the measured Stokes parameters satisfy I? > Q% + U2 + V2,
One can introduce the linear polarization degree 11 = \/Q? + U?/I and the circular polarization degree
I, = V/I.

Quantum description of radiation polarization. Every photon can be characterized by a positive
or negative spin +h. Also in the classical description, one can show that a polarized electromagnetic
wave carries angular momentum of density 7 x S, the sign of which depends on the helicity.

5 Thermal radiation

A system in thermal equilibrium emits radiation with characteristic (Planck or ‘blackbody’) spectrum
and intensity Iin(v,T), a function of the system temperature T. Most of the observable Universe
is very far from thermal equilibrium, but three thermal bumps can be seen in the cosmic radiation
background: optical (stars), infrared (dust) and microwave (CMB). The CMB spectrum measured by
COBE is astonishingly close to the Planck function for 7'~ 2.725K.
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Figure 2: Left: spectrum of the solar radiation (Smerlak 2011, European Journal of Physics, 32, 1143).
Right: spectrum of the cosmic microwave background measured by COBE/FIRAS with exposure of 9
minutes (Mather et al. 1990, ApJ, 354, L37).

Planck spectrum. The Planck spectrum can be derived from two principles: (1) the quantization
of possible photon states, and (2) statistical distribution of state occupation. Photons are massless
bosons that achieve thermal equilibrium with a surrounding system by being constantly emitted and
absorbed. Each photon state can be occupied by multiple photons, the distribution of state occupation
numbers is determined by thermodynamics.

In a 1-dimensional cavity of length L, the allowed photon states are those of wavelengths A,,, = L/m
for integers m = 1,2, .... The corresponding energies are E,, = hiy, = he/\,, = mhe/L. Each state
occupies an element of phase space AxAp, = A\, E;,/c = h, in accordance with the uncertainty
principle. Each such phase space element allows for 2 states, accounting for the photon spin values
+h. Thus, in a 3-dimensional cavity, the phase space density of states is ANy = (2/h3)d3x d3p. Since
d3p = p?dpdQ = (h/c)3v? dv dQ, the spectral density of states is dNs = (2v2/c®)dV dv dQ.

Under thermal equilibrium with temperature 7', the probability that a particular state is occupied
by n € {0,1,2,...} photons is P, = C'exp(—nE/kgT) = CQ™ with Q = exp(—E/kgT), where E = hv
is the energy of a single photon in that state, and kg is the Boltzmann’s constant. The normalization
constant C' can be found from ZZO:O P, =1,ie.,, C=1-Q. The mean occupation number of a state
is:

= P,n = = . 5.1
() nzzon 1-Q  exp(E/ksT) — 1 (5-1)
The mean spectral number density of photons is thus:
202 /3
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This corresponds to a specific intensity:
EdN 2hv3 /c?
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Rayleigh-Jeans law (hv < kgT). In the classical limit of low photon energies, one can approximate

the denominator to obtain: )

I, T) ~ 2kBTZ—2 . (5.4)

This can be used to define the brightness temperature Ty, = (I,/2kg)(c?/v?) as a measure of brightness,
especially in radio astronomy.

Wien law (hv > kgT). In the limit of high photon energies, the approximation is:

2hv3 hv
Lin(v,T) ~ = eXP <_kB_T> . (5.5)




Spectral peak. To find the peak of Ii,(v,T), we can write it as function of x = hv/kgT, i.e.,
Ly (2, T) = (2/c*h3)(kgT)*x3 /(e —1), and solve dIy, (z, T) /dx = 0, which is equivalent to (3—x)e® = 3,
the solution to which is Zpeak = h/peak/ksT =~ 2.82. This relation (vpeak o< T') is the Wien displacement
law.

Broad-band astronomical observations are often presented in the form of spectral energy distribution
(SED) vF,, which measures the radiative energy content per decade of frequency range d€/d(logv).
The peak of a Planck SED is equivalent to solving (4 — x)e” = 4, which yields @peax = AlVpeax/kpT =
3.92.

Total intensity. The bolometric blackbody intensity can be calculated by integration:

° 2(kgT)* [ z3
) = [ vty = 20 [Tar (56)

The value of this integral is 7%/15, hence:

_omtky
T 15¢2h3

Ien (T) (5.7)
This gives the Stefan-Boltzmann law, which is typically stated in terms of emergent energy flux density
F(T) = nl,(T) = osgT* with the Stefan-Boltzmann constant:

270 kzé

0SB — W . (58)
The Stefan-Boltzmann law can be used to define the effective temperature Tog = (F/osg)'/*, using an

observational estimate of bolometric energy flux density F'.

6 Radiation transport

Recall that the fundamental radiation measure is the specific intensity I,, = d€/(dA, dt dv dQ), closely
related to the phase space density of radiation energy. The total intensity is I = [ dv I,. It is of prime
astrophysical interest to know how does this measure evolve along the radiation path (geodesic) from
the source to the observer.

Emission. Let dl = cdt be a distance element passed by a radiation beam through an emitting
medium. An increase of total intensity dI = +j dl defines the emission coefficient j = d€epm /(dt dV dQ),
the radiation energy emitted per unit time, unit volume and unit solid angle.

Absorption. A medium through which a radiation beam passes may also absorb some of it, reducing
the intensity. A decrease of total intensity dI = —al dl defines the absorption coefficient o |1/cm], a
fraction of intensity absorbed per unit length.

A simple model for absorbing medium is that it consists of microscopic absorbers of number density
n [1/ecm3], each of a cross section o [cm?|, so that o = on.

Scattering. Scattering is a process of changing the direction of photons. It may be included in both
the absorption of an incident beam and emission along scattered beams, or treated separately.

Radiative transfer equation. The combined effect of emission and absorption is described by the
radiative transfer equation:

S =j-al. (6.1)
Two basic cases are:
o pure uniform emission: I(l) = I1(0) + jl;

o pure uniform absorption: I(I) = I(0)exp(—ad).



Optical depth. For an absorbing medium (« > 0), a dimensionless parameter called optical depth
is defined as d7 = adl. It allows to simplify the radiation transfer equation:
ar - j
—==—-1=5-1 6.2
dr  « ’ (6.2)

where S = j/a is the source function.

Mean free path. The average distance l,g, travelled by a photon before being absorbed (or scat-
tered) corresponds to an optical depth of unity 7(lmg) = 1. For a uniform absorption coefficient:
lmfp = 1/0[.

6.1 Radiative diffusion.

In a relatively opaque homogeneous static medium (high absorption coefficient, short mean free path)
of temperature 7', any initial radiation field approaches isotropic thermal distribution, i.e., both the
specific intensity and source function I(v), S(v) — Ln(v,T).

Eddington approximation. A weakly anisotropic radiation field is approximated as I () ~ Io+11 4.
One can define the following moments of I(u):

1t 1! I 1t ) I
J=o [ dplp)=1, H= [ dppl(p)=—, K= [ dop’l(p)=—. (63)
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These moments are proportional to mean intensity, energy flux density and pressure, respectively. Note
that K = J/3.

One can take the moments of the radiative transfer equation. Assume that the source function S =
Sp is independent of u (isotropic). Also, define the normal optical depth as d7. = pdr = padl = adr:

“jfr I (6.4)
3Z=;/1lduu§i - ;/11dﬂ(5—1)250—10, (6.5)
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This is a diffusion equation for the isotropic intensity component Ij.

Rosseland approximation. Under a small departure from homogeneity, e.g., a temperature gradi-
ent dT/dr (e.g. in stellar interiors), radiation transport takes the form of slow diffusion by random
walks over distances ~ l¢,. The radiation transfer equation can be approximated as:
dl dlip
I=85——~1I— .
dr th dr
Consider that d7 = adl = (a/p) dr, where p = cos of the angle between directions of the radiation
beam [ and of the temperature gradient 7:

(6.8)

(6.9)

Hence, we introduced an anisotropic (dipole) correction which is going to yield a net energy flux density.

2 1
1% dIth 2 dIth 9 47 dIth
F(r)= dQIp~— d———=—-——— d =——— 1

(r) /47T a /4,T a dr a dr J_4 e 3a dr (6.10)

The gradient of thermal intensity can be related to the gradient of temperature using the Stefan-
Boltzmann law:

O'SBT4 dlth - dlth d7T o 4USBT3 g

T dr  dT d&r 7 dr’

(6.11)



With this, the energy flux density is:

160’SBT3 g

F(r)~— e o

(6.12)
This is the Rosseland approzimation for the radiative energy flux density.

In the above derivation, we have implicitly assumed that absorption coefficient « is independent
of radiation frequency. The effect of frequency-dependent «, can be introduced at the stage of Eq.
(6.10):

4 dlyn(v,T) 4w Olyw(v,T)dT

F ~ AN Rl . S A4 1
(v.7) 3a, dr " 3a, OT dr’ (6.13)

Integrating over frequency:

o 4w dT [ ol T 4w dT dIi, (T 1605pT? AT
F(r)= / dv F(v,r) ~ T / dl/oflith(y’ ) = il 1 dLn(T) _ 98B
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(6.14)
where ag is the Rosseland mean absorption coefficient.

7 Radiation from moving charges

Source of electromagnetic fields. In lecture 1 we have mentioned that electromagnetic fields in
vacuum satisfy wave equations. In general, the Maxwell’s equations couple the electromagnetic fields
to electric charges ¢; of volume density p. = >, ¢;n; and currents ¢;¥; of density j = ", ¢;0:

V-E=4rp., ¢V xB—8E=/4nj. (7.1)

Electromagnetic potentials. A symmetry of these equations can be revealed by using the electro-
magnetic potentials. The electric scalar potential ¢ and magnetic vector potential A can always be
found to satisfy E = —ng 60A ‘and B=V X A. Such potentials automatically satisfy the remaining
two Maxwell’s equations V-B=0and V x E = faoB They are, however, not unique: potentials
modified as A + Vv,/} and ¢ — 0y for any gauge function produce the same electromagnetic fields.

Electromagnetic potential wave equations. In terms of the potentials, Eqs. (7.1) become:
02p — V3¢ = 4mp, , RA— VA= —J (7.2)

together with the Lorentz gauge 0y¢ + V-A=0.
Note an elegant covariance of these equations in terms of the 4-vectors A* = (¢, A?), j* = (pec, j*),
and 8/1 = (80,@»):

4
89, Al = %j", D AP =0. (7.3)

Retarded potentials. Egs. (7.2) can be solved using a Green’s function to obtain:

30 J! ‘(¢ _'/) 7!
v = /dtd W(S(t—t—i—\r /e | (7.4)
where the ¢ function selects the retarded time t' =t — |7 — 7’| /c for any retarded position 7.

This approach is particularly meaningful in the astronomical (especially cosmological) context - the
electromagnetic radiation that we presently observe was produced by the distribution of electric charge
in often extremely distant sources in their distant past.

400 = 0/02° = 9/9(ct) = (1/c)d:



Retarded potentials from a single charged particle. As the most elementary example, one can
consider a single particle of charge ¢, trajectory 74(t), and velocity 9(t) = drp/d¢. The contribution
of this particle to the charge and current densities can be expressed in terms of the ¢ function:

pelt,?) = g8 (F=7o(t)) . J(t,7) = qTo(t) 6 (7~ o (1)) - (7.5)
Let’s calculate the electric scalar potential:

o (7 — 7ot
B(t,7) = q/dt’ & (TF;",(' D —t4f7—/e) (7.6)
The first 6 function can be eliminated by integrating over d37’:

d)(tﬂ?) — q/dt' 6(tl — tR‘i(’t/]?g/a 7_")/6) , (77)

where B(t',7) = 7 — 7o(t') and R = |R|.
The argument of the remaining ¢ function is a non-linear function of . It is substituted as t” =
t'—t+R(t',7)/c, hence dt” = [1—7(¢',7)-Bo(t")] dt’ = k(¥',7) dt’, where 7i(t',7) = R/|R| and By = ¥/ c:

_ " 5(t//) _ q
o7 =g [ W0 RE,T) ) RED

(7.8)

If the particle is at rest (EO = 0, hence k = 1), this result is consistent with the Coulomb potential.
The additional factor (¢, ) contributes to the relativistic beaming (Doppler effect and aberration).
The corresponding magnetic vector potential is

aBo(t)
W) (0,7

Together, these are known as the Lienard-Wiechert potentials.

At,7) = (7.9)

Retarded electromagnetic fields. The Lienard-Wiechert potentials correspond to the following

electric field:
E(tﬂ:ﬁw(ﬁ—ﬁyrﬁ{ﬁx[(ﬁ—ﬁ)xa}}, (7.10)

where T' = 1/4/1 — 82 is the Lorentz factor, and @ = dv/dt is the acceleration. All of the right-
h_‘and side should bei evaluated at the retarded time t’. The corresponding magnetic field is simply
B(t,7) =7a(t',7) x E(t,7).

~
I

x=0 x=1

Fi igu.re 3.2 Graphical demonstration of the 1/R acceleration field. Charged
parzcle moving at uniform velocity in positive x direction is stopped at x= 0 and
t=0.

Figure 3: (Fig 3.2 in Rybicki & Lightman, 1979) Electric field lines sourced by a charge shifting rapidly
from resting at z = 1 to resting at z = 0. The 1/R? Coulomb fields must be joined within a transition
shell of fixed width, hence the field strength within the shell scales like 1/R. This argument was
originally presented by Thomson (1906).

This electromagnetic field consists of two components. The first term (velocity field) scales like
1/R? and reduces to the Coulomb field in the limit of charge at rest. The second term (acceleration

10



field) scales like 1/R, clearly dominating at large distances, and it is strictly perpendicular to 7. This
term is responsible for the electromagnetic radiation:

—

Eraa(t,7) = % {ﬁ X [(ﬁ - E) X a’” . (7.11)

Non-relativistic limit. When the particle velocity is non-relativistic (8 < 1), beaming becomes
unimportant (x ~ 1). The radiation field is simplified to:

rmd( F) = {TL X [’I’L X a]} . (712)

This vector product can be recognized to represent the component of acceleration vector perpendicular
to the line of sight 7. Let © be the angle between @ and 7. Since the parallel acceleration is d) =
(@- )i = (acosO)it, the perpendicular acceleration is @, = d—ay = (7i-7)d — (@-7)7 = —7 x (7 X @),
its magnitude is a; = asin ©, hence:

lqa L |

rad( F) — 7R L 3 |Erad| R . (713)
This electric field is a dipole, and its Poynting flux density is then:
c 1 ¢?
S=—FElq~ ——-=a] . 7.14
4r red T Rz 3L ( )

This represents the energy flux density d€/(dA. dt) of a unidirectional radiation beam through a
normal area element dA; = R?d(. The total luminosity emitted by a non-relativistic charge is thus:

d€ 7
t / da. § / d dre3 LT 47T 3

This is known as the Larmor’s formula. Radiation from a non-relativistic charge is a dipole perpen-
dicular to the acceleration vector.

2

Spectrum. A Fourier transform of the radiation electric field is:

Frag(w) = % L T at exp(iwt) Eraq(t) . (7.16)

If, however, the radiation field has a form of a sharp pulse of duration 7, the transform can be limited
to the frequency window of wr < 1, in which exp(iwt) ~ 1. Then we have:

q q
Erad(W) >~ 27TCQR / dt aL(t) = mAUl . (717)

The energy spectrum per unit area will be:

d& - q>

_ 4 _ 2., T 2
dodAL c|E(w)]? ~ PRI (Avp)=. (7.18)

Integrating over dA; = R?d() in the dipole approximation Av;, = Avsin©®, we find the total energy
spectrum:
& ¢
dw — (27m)2¢3
The spectrum of radiation produced by many impulsive acceleration events is thus determined by the
statistics of velocity changes during such events.

(Av)?. (7.19)

g2
(Av)2/dQ sin? @ = 32

e

Dipole approximation. In the case of many charges located in a region much smaller than its
distance Ry, i.e., at positions R; = Ro + 75 such that 7; < Ry, the relevant parameter for their

collective emission is the dipole moment d = >, ;7 and its second time derivative d= > €l
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Relativistic limit. In special relativity, the four-acceleration can be defined as a* = du*/dr =
d%z# /dr?, where T is the proper time. Recall that z# = (ct, %), u* = v(c,7), v = (1 —v?/c?)~/2, In
particular, u® = d(ct)/dr = ¢, hence dr = dt/v. Since u,u* = —c?, then a,ut = (1/2)d(u,u*)/dr =
0. In the particle’s instantaneous rest frame, u’** = (c,0,0,0), hence aj,u’* = agc = 0, hence aj = 0,
hence a,a" = aja™ = @ -a. Since energy and time transform in the same way, total power or
luminosity is a Lorentz invariant: L =d€/dt = d€&’/dt’ = L'.

The Larmor’s formula can thus be generalized to a covariant form:

2
3¢3

2 2
@ @) =La,a". (7.20)

L=1L =
3¢3

Lorentz transformation of acceleration is different for the components parallel and perpendicular
to the particle velocity:
a) =~ay, a| =~%ay . (7.21)

2¢? 2 2 2¢*
L= (a7 +a?) = 557" (Paf +ad) (7.22)

8 Bremsstrahlung

This German term literally means deceleration radiation, it is the radiation of unbound charge decel-
erating in the Coulomb electric potential of another charge, also known as the free-free emission. The
most relevant astrophysical case is that of an electron (¢ = —e) interacting with an ion (¢ = Ze).
Because of the high mass ratio, the ion can be considered fixed.

Single interaction. A classical treatment of the problem is valid in the limit of small scattering
angle. Let vy < ¢ be the initial velocity of the electron approaching the ion with impact parameter b.
Those two parameters define the collision timescale T = b/vg, and two energy scales: kinetic mqv3 /2
and electrostatic potential Ze?/b.

Electron velocity change (I). As an order-of-magnitude appoximation, consider the peak Lorentz
force Fpeax = Ze?/b? acting on time 7 changes the electron velocity by roughly
_Ap  (Ze2)V)T | Ze?

A = ) 1
v Me Me mebug (8.1)

Electron velocity change (II). Noticing a planar symmetry of the problem, one can consider a co-
ordinate system (z, y) centered on the ion, in which the electron trajectory is Ro(t) = (vot, b) = b(t/T,1).
The electron distance follows a universal time profile R.(t)/b = (t2/7% + 1)'/2. This corresponds to
a universal time profile of acceleration (parallel or perpendicular to 7). In the case of perpendicular
acceleration a; = apeak(Re/b) ™3, where apeax = Fpeak/me = Ze?/(meb?), it can be shown that the
velocity change amounts to

27¢?

mebvgy

AV = 2apeakT = (8.2)

Total luminosity. The peak acceleration apeax = Ze?/(meb?) can be put into the Larmor’s formula
to find the peak total luminosity that a single particle can produce:

22 [ Ze2\° 2725 2, (Ze\’
brea =55 a2 )~ 3mzew 37\ ) (83)

where r, = €2 /(mec?) is the classical electron radius.

Spectrum (I). The core of the acceleration profile is close to a Gaussian with dispersion At = 7.
Its Fourier transform is thus close to a Gaussian with dispersion Aw = 2/7. The total emitted energy
AE ~ LpeaxT is now allocated into a spectral window v < Av = 1/(n7): AE ~ E(v) Av, hence:

d& 9 Z2%eb 5 Ze 2
—_—~ L cak ~ T a5 5 — —_— . 84
dy T peak m2c3b2vd e \ buo (84)
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Figure 4: Left panel: time profiles of electron acceleration (distinguishing components parallel or
perpendicular to the electron velocity direction) in the Coulomb electric field of an ion at rest
(bremsstrahlung). Rigth panel: Fourier transforms of the acceleration profiles into the frequency
space.

Spectrum (II). Using the formula for energy spectrum in the dipole approximation:

16 Z2e8

42
dgwi(Av)Q_

16
T 30 = —7?Lpeak - (8.5)

3 m2c3b202
3 mZcibivg 3

Example. The velocity change is significant, Av ~ vy, when electrostatic potential energy is compa-
rable to the kinetic energy. For thermal ionized hydrogen (Z = 1) with mev3 ~ kT and temperature
T = 10*T, K, this corresponds to an impact parameter b ~ Ze?/(kgT) ~ 2ZT; * nm, collision timescale
T =bjvg ~ 10*13T4_3/2 s, peak luminosity Lpeak,0 = Z2€5/(m2c3b*) ~ 1076Z72T} erg/s, and charac-
teristic frequency Av ~ 1044217} /2Hz (infrared).

Emissivity. Consider a medium consisting of ions of density n; and electrons of density n. and veloc-
ity vg. Interactions of electrons with ions happen over a broad range of impact parameter b. The cross
section for interactions at b < b’ < b+ db is 2wrbdb. Over a time element dt a single electron interacts
with dV; = n;(vodt)(27b db) ions, emitting radiation of spectrum €(v) = (16/3)Z2%€5/(m2c3b?v3). In a
volume element dV there are dN, = n.dV electrons. Hence, the collective radiation of those electrons
can be calculated as:

¢ 327 eS Z2n.ny /b"‘a"db

dvdvdt 3 m23 v J, (86)

At a given frequency v, only interactions with impact parameter b < byax = vo/(wv) contribute.
The minimum value of impact parameter is effectively by,in = h/(mevp).
An accurate result is parametrized with a Gaunt factor gg(vg,v) such that:

d& 3212 e Z2nem;

= . 8-7
wdvdt  3/3m2d v (87)

9 Radiation from electrons accelerated in magnetic field

9.1 Cyclotron radiation

Electron acceleration in uniform magnetic field. In the presence of uniform magnetic field,
e.g. B = ByZ, the Lorentz force on an electron with ¢ = —e and velocity v = gc is Fj, = qg x B.
Acceleration thus affects only the perpendicular velocity component v, = v sin «, where « is the pitch
angle. Neglecting any motion along the field line (it yields no acceleration), in the plane perpendicular
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to B, here (z,y), the electron moves along a circle with the gyroradius (or Larmor radius) Ry, for
example:

7(t) = Ry [Zsin(Qut) — gcos(Qrnt)] = RL7, (9.1)

47
v (t) = d—; = RpQy [#cos(Qrt) + §sin(Qut)] = v 0 = S ed, (9.2)
at) = % = —RpO} [#sin(Qut) — §cos(Qt)] = —art, (9.3)

where Qy, is the gyrofrequency (or Larmor frequency), which can be calculated from the ratio of
acceleration and velocity amplitudes:

F B B,
VL MU | MeV | meC
The gyroradius can be then calculated from the velocity:
RL v - MeCU | (95)

:QiL_ €BO

Cyclotron radiation. Acceleration of a non-relativistic particle in uniform magnetic field produces
the cyclotron radiation.

Consider an observer located at large distance R in the direction 7 = Zcos © + Zsin ©. In order to
determine the radiation electric field Eyaq ~ @, /(c*R), we need to find the perpendicular acceleration
vector @1 1 f. The parallel acceleration is aj = @ -7 = —agsin(QLt)sin©. The perpendicular
acceleration is:

dL =d—ajn=ay [— sin(Qpt) cos® ©, cos(Q.t), sin(Qy,t) sin © cos @] ) (9.6)

Angular distribution of emitted power. One can show that a3 = af [1 — sin?(Qpt) sin? e].

Averaging over time, we have <aﬁ_> .= a? (1 —sin? @/ 2). The angular distribution of radiation power
is a combination of isotropic and dipole components.

Recall that the Poynting flux density corresponding to the radiation electric field is:

c 1 €2
S=—F2,~———ad*. 9.7
4 mad T 4 R2 (3 oL (9-7)
Taking the time-averaged acceleration:
1 e2 9 1.5
<S>t ~ WC?GL (1 — 5 sin“ © . (98)
Total luminosity. The Larmor acceleration can be expressed in terms of classical electron radius
re = €%/(mec?), Thomson cross section or = (87/3)r2, and background magnetic energy density
Upo = 33/87{1
e’B? 3¢? 8w , B3 3¢?
a? = Q% = mgcg v2 = 6—27"33(2)1)3_ = 6—237“38—721)3_ = e—QUTuBva_, (9.9)
3 9 1.,
(S), ~ WcoTuBOBL 1- 5 sin 0. (9.10)
Recognize that S = dE/(dtdA ) = dL/(R?dS), the total luminosity is
L= coru /52/ o (1-Lten2e (9.11)
= 47‘(‘ OTUBO 1 . 2 . .

Substituting u = cos © and dQ? = 27 du, one can calculate the integral to be 87/3, hence:
L = 2corupofi . (9.12)

For isotropic distribution of electrons, averaging 2 = 32 sin® § over the pitch angle o gives (B1), =
(2/3)/3%, hence:

4
Liso = gCO'TuB()B2 . (913)
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Polarization. Since acceleration is strictly harmonic in time (the frequency spectrum is discrete),
radiation for particles with the same €, is completely polarized.

e For an observer located along the magnetic field (© = 0), @, rotates in the (z,y) plane, the
polarization is strictly circular.

e For an observer located perpendicular to the magnetic field (@ = 90°), @, has only the y com-
ponent, the polarization is strictly linear.

9.2 Synchrotron radiation

When the charged particle (here electron) propagating in uniform magnetic field By becomes relativistic
with velocity 3 = v/c < 1 and Lorentz factor v = (1 — 82)~'/2 > 1, the Lorentz force has the same
form as in the non-relativistic case, but it causes a change of relativistic momentum p;, = ymev,
perpendicular to By. The gyrofrequency is changed to Q1 = a, /v, = eBy/(ymec), and the gyroradius
to Rr, = vy /Q, = ymecv, /(eBy).

Total emitted luminosity. In the relativistic case it is necessary to distinguish the radiative power
emitted into a unit solid angle from the radiative power received from the same solid angle. This is
because the emitting particle approaches the observer, chasing the photons emitted previously (light-
travel effect). Here we are concerned with the radiative power emitted in all directions, i.e., the total
emitted luminosity.

The Larmor’s formula can be used in the instantaneous frame of the electron (0, using the invariance

of power.
Low = I = 2 (@12 9.14
em — “em — @((L ) ( . )
Noting that the acceleration vector is strictly perpendicular to the velocity @ = @, L ¢ (in O, d@' is
perpendicular to the velocity of ©), the Lorentz transformation of acceleration is a’, = v%a ;. One can

write that:

e’Bf ,
m2c?

(a /) = ’Y a = 74QLUL = 7 'UL (9.15)

Compared with the non-relativistic case, the luminosity will be multiplied by ~? factor:

4
Leyn(a)) = 2cotupoy? 5% sin’ Lgyn iso = gcoTuBmQBQ . (9.16)

Cooling time scale. The cooling time scale 7. is the ratio of electron energy to the emitted
luminosity:

YMeC? 1 MeC? 1 7 1 Ue

r L= — —_— 7, 9.17
coobsvn T (@) 4yB2sin?a (4n/3)r3 upo ¢ 4yA2sin’a upy 10

where 7, = 7./c ~ 0.94x 10723 s is the classical electron light crossing time scale, and u, = mec?/[(47/3)r?]

0.87 x 103 erg/cm? is the classical electron energy density. For a = 90° and $ =~ 1, one has
Tcool,syn =~ 065’7_1 (uBo[erg/cm?’D_l yr.

Relativistic beaming. For relativistic particle motion, the expression for radiation electric field
Erad includes the k3 term, where k =1 — 7 - ﬂ represents time retardation. Introducing the emission
angle O, between the emission direction (line of sight) 7 and particle velocity 5 = ¥/c, one finds
k = 1— Bcosbey. This kK < 1 only when both 8 ~ 1 and cosfe, ~ 1. In the relativistic limit,
B ~1-1/(29?). In the limit of small angles (fomy < 1), €08 =~ 1 — 62 /2. Taken together, they
yield £ ~ (1 +~262,)/(27?). Radiation is thus strongly beamed into a cone 6., < 1/7 around the
instantaneous electron velocity.
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Characteristic time scale. A relativistic electron that gyrates in the magnetic field with frequency
Qy, emits synchrotron radiation into a very narrow cone sweeping its sky. An observer that is swept
by such beamed radiation would detect a very narrow pulse. Consider the case of perpendicular pitch
angle a = 90° and observer located at n = . Let the particle trajectory and velocity be as before:

7(t) = Ry[#sin(Qrt) — §cos(QLt)], (9.18)
o(t) = wv[Zcos(Qt) + §sin(Qpt)]. (9.19)
The emission angle is O (t) = Qut. Introduce two emission moments with fep, (tem,1) = —1/7v and

Oem (tem,2) = 1/7, hence tem,1 = —1/(v2) and tem o2 = 1/(7€2). The time it takes to emit a single
pulse along 7 is Atem = fem,2 — tem,1 = 2/(7). However, at tem,1 the electron was at Tem1 =
Ry, sin(—1/v) ~ —Ry, /v, and at tem o2 the electron was at zem 2 =~ Ry /7, the difference being Azepm
2Ry, /v = 2v/(7yl). The observed time scale is shortened by the light travel effect:

AZem  2(1—7) 1
Atops = Atem — = ~ .
b C ’yQL ’73QL

(9.20)

Characteristic frequency. The extreme shortness of observed pulses means that the spectrum can
extend into very high frequencies. Detailed synchrotron spectrum for arbitrary pitch angle o has a
characteristic frequency of w. = (3/2)y3Qy, sin a.

Spectrum and polarization. Because of the relativistic beaming, synchrotron radiation is not
harmonic like cyclotron, but consists of characteristic pulses that result in a continuous spectrum.
Detailed calculation of the spectrum distinguishes two polarizations for the radiation electric field:
parallel or perpendicular to the magnetic field projected onto the plane normal to the line of sight 7:

ddel _ \/iejs:'ci;“ (F(z)+ G()] , 9.21)
% = \/w [F(x) — G(x)] , (9.22)

with special kernel functions of z = w/we:
Fla)=s [ d€Kos(©),  Gl0) = Kapale). (923

The function F'(z) represents the spectral shape of the total emission, and the function G(z) represents
the spectral shape of the polarized emission. The integral of F(z) is [, dz F(x) = 8/(9v/3), which
makes the above spectra consistent with the L(a) function.

Because G(x) < F(x), synchrotron radiation is linearly polarized with polarization degree II(x) =
G(x)/F(z). The polarization degree ranges from 50% in the low-frequency limit w < w. to almost
100% in the high-frequency limit w > we.

Radiation from non-thermal particle distribution. Synchrotron radiation is most often asso-
ciated with ultra-relativistic particles having a broad non-thermal energy distribution. Of particular
interest are power-law distributions N () o< v~P. The collective synchrotron radiation of such particles
has a power-law spectrum L(w) oc w~®~1/2 and polarization degree Il = (p +1)/(p + 7/3).

9.3 Curvature radiation

It is the radiation of relativistic particles propagating along curved magnetic field lines. The key
parameter to determine the acceleration is the curvature radius R., which for velocity v determines
acceleration (perpendicular to the velocity) a; = v?/R.. The characteristic radiation frequency is w, =
(3/2)73(v/R.), and the total luminosity is L = (2/3)ce?(y*4%/R?). Compare this with the luminosity
of synchrotron radiation, which can be presented in the form Ly, (a) = (2/3)ce?(v43* sin* a/ R?). The
spectrum of curvature radiation uses the same kernel function F(x).
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Figure 5: Kernel functions for the total spectrum F(x) (red) and polarized spectrum G(x) (blue) of syn-
chrotron emission, of the argument x = w/w. with the characteristic frequency w. = (3/2)y>Qy sin .
The green line shows the polarization degree II(x) = G(z)/F(x).

10 Radiation scattering off electrons

10.1 Leptonic radiative processes

Of particular interest to astrophysical radiative processes are interactions between radiation and the
lightest charged particles — electrons and positrons. Low mass (~ 2000 times lighter than proton)
and elementary structure (as far as one can measure) make electrons more efficient emitters and more
sensitive to radiative force. Radiative processes based on electrons (also positrons, muons) are known
as leptonic.

In the quantum approach, electron interacts with photons. There can be just three basic types of
such interaction:

e scattering: an electron interacts with a photon, leading to exchange of energy and momentum;
e annihilation: an electron interacts with a positron, annihilating into two energetic photons;
e pair creation: two energetic photons create a pair of electron and positron.

Note that a free electron cannot emit or absorb a photon, as this would violate conservation of energy
and momentum.

10.2 Thomson scattering

The classical approach to the interaction between radiation and a charged particle is known as the
Thomson scattering.

Consider an electron interacting with a plane electromagnetic wave propagating along k = 2. If the
electron is initially at rest, it only feels an oscillating electric field. Let the wave be linearly polarized,
and consider specifically E.(t) = Epcos(wt). The electron feels a Lorentz force F,(t) = —eFE,(t) =
—eFEy cos(wt), which causes acceleration a,(t) = F.(t)/me = —agcos(wt) with ag = eEp/me. By
integration over time, this acceleration is consistent with velocity v,(t) = —vgsin(wt) with vy =
eEy/(mew), and trajectory x(t) = xq cos(wt) with zg = eEq/(mew?).

Radiation electric field. The accelerated electron is a source of electromagnetic radiation. As long
as its motion is non-relativistic, at distant position R = RR the radiation field is a dipole with an

amplitude:
eag . e By .
Erpq ~ é sin® = e ﬁo sin®, (10.1)
where © = Z(R, %) is the scattering angle. Note that e2/(mec?) is a length known as the classical
electron radius ro = 2.818 x 10713 cm, hence Eyaq/FEo = (re/R)sin ©.
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Total luminosity. For the Larmor’s formula, we can use a time average of a(t)?, which is (a?), =
a2 /2:
et r2 8mr? cE?
L= ——E5 = 2cE} ¢ 0 =g (S, 10.2
303< = graato = g = T3t gy S or (S (10.2)

where or = (87/3)r2 ~ 6.65 x 1072° cm? is the Thomson cross section, and (Sy), = cE3 /87 is the
time-averaged incident Poynting flux density. Thus, in order to sustain emission, the electron absorbs
the incident electromagnetic energy as if having a cross section of or.

Polarization. Let us specify the scattered emission direction as R=2%cos©+ Zsin®. We also need
to specify an ortonormal basis including R. We can choose 9§ =¢gand &' =g x R=#cos©® — 2sin®.
For an acceleration amplitude @ = a,Z, the component perpendicular to Risa, =a-# = aycos o,
which implies the time-averaged scattered Poynting flux density

c e2a2
Sy = S—WEfad 3R2 cos’ 9. (10.3)

This component is anisotropic in the (z,z) plane, with maxima for © = 0,180° and no emission for
0 = +90°.

On the other hand, consider a different polarization of the incident wave resulting in acceleration
amplitude @ = a, 9. The perpendicular component is then a;, =ad- ¢ = a,, and

62(12
y = 87rc3R2 . (10.4)
This component is isotropic in the (z, z) plane.
We can identify the total and polarized scattered intensities as:
e? 2 .2 2
Itot = Sx + Sy = m(ax cos” O + Gy) y (105)
e’ 2 2 2
pOl |S | = mklw cos”“ O — ay| . (106)
The polarization degree is thus:
11— Dol _ |a2 cos? © — a2 (107
Lot a2 cos?© +a2 '
In the case of unpolarized incident wave, we have a3 = a, and
1 —cos2@©
BTl (108)

10.3 Compton scattering

The quantum approach to interaction between radiation and an electron is known as the Compton
scattering.

Consider an electron initially at rest interacting with an incident photon of momentum p; =
(hvy/c)%. The total energy and momentum of this system is:

h
E = hvy +mec?, D. = % . (10.9)

Absorption solution. If one would like to assign this energy and momentum to the electron with

recoil velocity 172 = wi = fack, Lorentz factor 7o = (1 — 3)~'/2, and dimensionless 4-velocity
uy = Y22 = (73 — 1)%/2, one would need to satisfy & = yamec® and p, = ugmec, which leads to an
equation
hv
€6 = 12 =y — 1= Uz , (1010)
MeC

which only has a trivial solution vo = 0 and v; = 0. For a similar reason, a free electron cannot emit
a photon.
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Scattering solution. The incident photon cannot be absorbed, but it can be scattered at arbi-
trary angle ©. Let the scattered photon have a momentum ps = (hve/c)(2cos© + & sin ©). We also
need to account for electron recoil with momentum pe o = Y2mev2(£cos O + Zsin ©,). Introducing
dimensionless photon energy ¢; = hv;/mec?, the conservation of energy and momentum now involves
3 equations:

m62:€1+1 = €+ Y2, (10.11)
e
Pz =€ = €050 + uycosO,, (10.12)
MeC
Pz =0 = €5n0O +uysin®O,. (10.13)
meC

The 3 unknowns are €g, vy (or 2 or ug), and O.. The electron scattering angle can be eliminated
from the z-momentum as sin®, = —(ea/uz)sin©. Substituting to the z-momentum yields u3 =
€2 + €3 — 2e162c080. On the other hand, the energy equation gives 73 = (e1 — ea + 1)%. After
eliminating wus, the solution for scattered photon energy is:

€1

B 1+e(1—cosO)’

€2

(10.14)

Thomson and Klein-Nishina regimes. The energy change €5 — €; is negligible for ¢; < 1 or
hvy < mec? (the classical limit corresponding to the Thomson scattering). Once the incident photon
energy becomes comparable to the electron rest energy of mec? = 511 keV (soft gamma rays), its
energy will be reduced upon scattering (es < €1). For head-on scattering (© = 180°), ez = €1/(1+2€1).

An energetic gamma-ray photon with €; > 1 can in principle deposit most of its energy to the
electron, but it would also be increasingly more likely to produce electron-positron pairs. This is
known as the Klein-Nishina regime, in which the scattering cross section oxn becomes systematically
lower than o.

10.4 Inverse Compton scattering

Astrophysical electrons are often highly energetic, even ultra-relativistic with Lorentz factors v > 1.
We have direct evidence for this from detections of cosmic rays (they are just a minor ingredient, but
very important at ~ GeV energies) and solar energetic particles. Considered in the electron’s rest
frame, this process is exactly the same Compton scattering, however, to understand the results in the
frame of astrophysical interest (could be a source frame like AGN black hole, but also the co-moving
frame of a relativistic jet), both the incident and scattered photons need to be Lorentz-transformed.

Reference frames. In a reference frame O, consider an ultra-relativistic electron with v = (1 —
?)~1/2 > 1 propagating along 2. The electron rest frame is denoted as O'.

Incident photon. Consider an incident photon, which in O has momentum % = p; (2 cos 61 +4 sin 6;)

with py = &1/¢ = hvy/e. In O, the momentum of this photon is likewise p} = p)(Zcosf] + & sin6}).

The parameters pj and uj = cosf] are related to p; and p; = cos 6y by Lorentz transformation:
p—pB

Py =1 = Bu1)p1 = Dipr s p=—7a, (10.15)

1—Bm

where a Doppler factor D, has been introduced. Those are the relativistic Doppler and aberration

effects, respectively. The aberration law implies also that d2} = (du}/du;) dQy = dQ, /D3.

Scattered photon. Now consider a scattered photon in @’. For simplicity, let us confine the problem
to the (&, £) plane, so that the scattered photon momentum is pl, = p5 (2 cos 05 + 2 sin 6). This photon
is transformed to O using reversed Lorentz transformation:

/
_|_
p2 =71+ Bus)py,  p2 = mtp (10.16)

14 B
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Example. As a typical example, consider in O an incident photon with 6; ~ 90°, so that u; ~ 0. In
O’ relativistic aberration results in ) ~ —f, hence 6] ~ 180° — 1/+; and the photon momentum is
relativistically boosted p| =~ yp;. For scattering in the Thomson regime, p, ~ p}. For the scattering
angle, let us take © ~ 90°. Then, the scattered photon would have 85 = 6] + ©' ~ £90°, hence
wh ~ 0. Transformation back into O yields ps ~ vp, and ps ~ 8 or 65 ~ 1/~, closely along the electron
velocity. The combined momentum boost is py ~ yph ~ yp} =~ v?p;.

Luminosity. The power of radiation scattered off a single relativistic electron can be first evaluated
in its rest frame O’. In the Thomson regime, the energy of scattered photons does not change, hence the
power of scattered radiation equals the power of incident radiation. The number of incident photons
interacting with an electron per unit time dt’ is AN = n} dV’ = njorcdt’, where n/ is their number
density. This scaling is independent of the photon energy and direction (momentum). However, the
amount of incident energy depends on the photon energy distribution:

d&y , o dNV{

/
Qo = Qmec = cop mec? €
1

!
de}

/
dnj
/
de}

dt’. (10.17)

Recall that the phase space distribution of photons f = dN/(d*7d3p) = dn/d3p'is Lorentz invariant.
This means that dn/(e? ded(?) is Lorentz invariant. Since €' /e = D(u) and d¥'/dQ = 1/D(u)?, then
dn/de is also Lorentz invariant. One can now write:

el
v

’ d’l’Ll
15 -
d61

= cor meCQ/ de} e (10.18)

Consider that the incident radiation is unidirectional with fixed u1, then one can write that dej =
D1 (p1) deq, so that:

dé&; dn
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where we introduce the radiation energy density u,aq(11). The average value of the explicitly anisotropic
term is <(1 — 6u1)2>91 =1+ (%/3 ~ 4/3. Hence, in the case of incident radiation isotropic in O, i.e.,
Uraq independent of py, once has

/
Lic,iso = <(315,1> = éCUT’yzurad, (10.20)
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Analogy with the synchrotron radiation. Recall that for the synchrotron radiation, the pitch-
angle averaged luminosity for an ultra-relativistic electron is Lgyn iso =~ (4/3)cory?*up. This formula is
strikingly similar to the one for inverse Compton luminosity, with magnetic energy density ug playing
the role of incident radiation energy density u,,q. This similarity can be used directly in the studies
of blazars, in which the same electrons can produce synchrotron radiation to explain the low-energy
non-thermal spectral component and upscatter various radiation fields by the inverse Compton process
to explain the high-energy spectral component. The luminosity ratio (Compton dominance) can be
used to constrain relative energy densities in the emitting region (within a relativistic jet frame O’):

Lic _ U (10.21)
Lgyn up

Quantum picture of the synchrotron radiation. This suggests a deeper similarity between these
two processes. In the QED, synchrotron emission can be interpreted as the inverse Compton scattering
of virtual photons associated with the magnetic field. The characteristic frequency of the synchrotron
radiation, w. ~ v2Q. with Q. = eB/mec the cyclotron frequency (non-relativistic Larmor frequency),
suggests that those photons have energies ~ hf).. One can also evaluate that synchrotron radiation
is equivalent to the Thomson scattering, unless YAQ. ~ mec?. Without the « factor, this condition
defines the critical magnetic field strength B., = m2c®/(he) ~ 4.4 x 1013 G, which is exceeded in the
magnetars.

20



11 Radiation propagating through plasmas

When an electromagnetic wave propagates through a plasma (e.g., interstellar medium), charged par-
ticles are accelerated by the radiation electric field. This classical description is similar to the problem
of Thomson scattering, but now we consider many charges. Once again, electrons are most affected
due to their low mass.

11.1 Dispersion

Consider a linearly polarized wave propagating along k = 2 with electric field E, (¢, z) = E; exp(iwt +
ikz). This electric field causes electron acceleration a.(t,z) = —eE,/me and velocity v.(¢,2) =
ieE, /(wme), out of phase with a,(¢,z). Motions of electrons of number density n. contribute to
electric current j,(t,2) = —enev, = —ie*neE,/(wm.). This electric current contributes to the x
component of the Ampere’s law:

o(VxB), = 4nj,+0,E,, (11.1)
. 2 E
—ickB, = —Ar— "% 4 wE,, (11.2)
WM
4 2 e e
—ckB, = <7Te”2/m + 1> WE, . (11.3)
w

The term 4me?ne,/me = wg is the squared plasma frequency, a function only of electron density: wp, ~

60 nlf kHz. The magnetic field component can be substituted from the Faraday’s law B, = —(kc/w)E,
to obtain a dispersion relation:
w? =k + w3 . (11.4)

Note the following implications:

e The phase speed is vpn, = w/k = ¢/n, > ¢, where

ny = [1 + (‘Ziﬂ L {1 - (‘f)Q] o (11.5)

is the index of refraction.

e The group speed is vg, = Ow/0k = cn, < c. Information (e.g., pulses of pulsars, fast radio bursts)
travelling with the group speed will be dispersed and delayed by
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(11.6)

with the dispersion measure DM = | g drne; the linear approximation made in the limit of

w > Wp.

e For w < wp, k becomes imaginary, which means that electromagnetic wave is exponentially
damped on length scale ¢/(w? — w?)'/2. In the limit of w < wy,, this length scale is known as the
skin depth d, = c/wp.

11.2 Faraday Rotation

Let us extend the above problem by including uniform magnetic field along the wavevector: B:o =
Bok = Byz. The wave electric field can be parametrized by amplitude and polarization angle E; =
Ey(&cosx + §sinx) = E; exp(ix), either of which may have a time dependence of o exp(iwt). The
electron velocity E is now governed by the Lorentz force ﬁL = —e(El + B X EO) = Med = iwmecg.
Noting that 5 X Eo = —iBog, one obtains:

E .z w . =
_§O+Zﬁ_ﬁczﬂ7 (11.7)

where the cyclotron frequency €. = eBy/(mec) was substituted.
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The solution is: .
3= M@ 7 (11.8)
1-— Qc/w BQ

where we anticipate that |w/Qc| > 1.

Note that different signs of By or w result in solutions of two different amplitudes. Fixing By > 0
and hence €. > 0, two signs of w correspond to the 2 fundamental circular polarizations. Note that
w combines the time dependences of amplitude F; and polarization angle x. For circular polarization,
E; is constant and x = xo + wt. For linear polarization, y is constant and F; o exp(iwt), which is
nevertheless equivalent to a combination of two opposite circular polarizations.

We now need to combine the Ampere’s law with the Faraday equation (note that vV x él =

ik(2 x By) = ik(—i)B; = kB, and likewise V x E; = kE)):

kcgl = 4Wf+ inl , (11.9)
keE; = —iwbB, (11.10)
(K2 —w?)iE, = 4nw], (11.11)
Substituting 5 = —cenegz
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Substituting E, we obtain a dispersion relation and expression for phase speed vy, = w/k:

2

k2 —w? = —I_MT’;/W, (11.13)
w w2
(¢/vpn)? = 11(_"?%%}. (11.14)

We now consider a limit of w > wy,, Q. The linearized phase speeds for w = +wy are:
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The phase speed difference is
A’Uph N (UIQ,QC

~ 11.16
o (11.16)
Over distance Az this results in a phase difference (substituting ko = wo/c = 27/\o):
Avpp wgﬂc 4re® 9
A¢ = kO AZ ~ cw% AZ = W )\O TLeBQ AZ . (1117)
This phase difference corresponds to twice the rotation of the polarization angle:
A 3
Ay=22 2 C L piAs= A2RM, (11.18)

2 0 27rm2ct

where RM stands for the rotation measure. Over long astrophysical distances r, electron density n,
and magnetic field component B parallel to the line of sight (and positive towards the observer) may
be functions of r. Hence, astrophysical rotation measures are line-of-sight integrals:

63
RM = W /Rdrne BH . (1119)
e

For uniform distributions of RM (Faraday screens), rotation of polarization vectors scales with \2.

Faraday rotation is a very important effect in radio astronomy. On one hand, it makes difficult
measuring the true polarization of radio sources; on the other hand, it allows to estimate the strengths
and distributions of magnetic fields in extended sources, especially across the Milky Way.
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12 Absorption processes

Each emission process is associated with an absorption process. In particular, bremsstrahlung is
associated with the free-free absorption, and synchrotron radiation is associated with the synchrotron
self-absorption. In general, absorption becomes important at low frequencies, at which the individual
processes of photon emission (spontaneous or stimulated) and photon absorption become more probable
and more balanced. Below certain characteristic frequency, a particular source may become optically
thick to a particular absorption process. In such conditions, a thermodynamic equilibium can be
achieved, at least between photons of given frequency and electrons of corresponding characteristic
energy. In the case of free-free emission, the optically thick spectrum hardens to F'(v) o< v2, consistent
with the Rayleigh-Jeans thermal spectrum. In the case of synchrotron self-absorption, the optically
thick spectrum hardens to F(v) oc v%/2.

T=Xx=1 log /()

\ 1, = constant

Intensity, log /,,

Frequency, log v

The spectrum of thermal bremsstrahlung at low radio frequencies at which self-absorption becomes important. This s log
the characteristic spectrum of the compact regions of ionised hydrogen found in regions of star formation. The spectrum of a source of synchrotron radiation which exhibits the ph of synchrotron self-abs

Figure 6: Left: schematic spectrum of the bremsstrahlung emission with free-free absorption (Fig
6.4 in Longair, 2003). Right: schematic spectrum of the synchrotron emission with synchrotron self-
absorption at low frequencies (Fig 8.12 in Longair, 2003).

13 Pair production and annihilation

Basic interactions between electrons/positrons and photons (interaction of two particles resulting in
two particles) include: (1) Compton scattering, (2) photon-photon production of electron-positron pair,
and (3) annihilation of electron and positron into a pair of photons. Pair production and annihilation
involve gamma-ray photons with energy exceeding the rest energy of electron/positron hy > mec?.
Positrons can also be produced in other processes, including 8 decays and pair production in strong

electromagnetic fields. Positrons are the most common form of antimatter in the Universe.
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Figure 7: Cross section for the photon-photon pair production process, normalized to the Thomson
cross section. Thin lines are for fixed cosine p = cos(6) of the angle 6 between incident photons. The
thick line shows the average cross section for isotropic distribution of target photons.
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14 Hadronic processes

Radiation is produced by accelerating charged particles, this course has been focused on the electrons
(and positrons) as the lightest stable abundant charges. However, heavier charges can also contribute
to the cosmic radiation. Protons (baryons) and other atomic nuclei are abundant and stable, can be
accelerated to extremely high energies (~ 10%° eV), making up most of the cosmic rays. They can
produce radiation by acceleration in magnetic fields (proton synchrotron) or by colliding with other
particles, which results in cascades (showers) of secondary particles including leptons, unstable mesons
(mostly charged or neutral pions), which in turn produce radiation. Baryons are mesons are collectively
known as the hadrons, hence the overall term hadronic processes.

14.1 Proton synchrotron

Let us compare a relativistic proton with Lorentz factor v, with an electron with the same energy
Ee = Yemec® = ypmpc? = E,. Such electron is even more relativistic with v = (m,/me)7yp. The
Larmor frequency of the proton Qf, , = eBy/(ypmpc) is exactly the same as for the electron. Accel-
eration in the reference frame of interest, perpendicular to the velocity vector, is ap | = Qppvp, 1 ~
Qr, pc, comparable to that for the electron. However, acceleration in the rest frame of the proton
is a; = Wgap, 1. In the Larmor’s formula for total luminosity, we use squared rest-frame acceleration
Leynp = (2/3)(e*/2)7p 7 2 | . Hence, for relativistic proton and electron of equal energy, the ratio of
synchrotron luminosities is Lsyn p/Lsyn.e = (Yp/Ve)* = (mp/me) ™. Correspondingly, the synchrotron
cooling time scale for a proton will be longer by factor (m,/me)?*, and its characteristic frequency will
be wep/Wee = (Vp/7e)® = (mp/me) 3. Because the luminosity per particle is so much lower, proton
synchrotron process is much less efficient energetically than electron synchrotron. This is generally
true for all hadronic processes. Nevertheless, in the presence of extremely energetic protons they may
be important and are being considered. An important motivation is to explain observations of highly
energetic neutrinos (e.g. by the IceCube experiment) inferred to have an astrophysical origin.
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