Supported by ERC through Starting Grant no. 759253

European Research Council Established by the European Commission

Neutron star mergers and the high-density equation of state

Astrophysics with GW detections

Warsaw, 07/09/2019

Andreas Bauswein

(GSI Darmstadt)

Outline

- ► Motivation and overview
- ► Multi-messenger interpretation of GW170817 \rightarrow lower limit on NS radii \rightarrow Collapse behavior (EoS dependence of BH formation)
- Postmerger GW emission
- Signatures of the QCD phase transition

Motivation: Neutron stars and the EoS

- Nuclear many-body problem hard to solve (some approximations required)
- Nuclear interactions not precisely known, especially at higher densities
- Fundamental contituents of NSs not known: pure nuclear matter, hyperons, ..., possibly phase transition to deconfined quark matter
 - → high-density EoS not precisely known

↔ stellar structure of NSs not precisely known - density profile, radii, tidal deformability, maximum mass ???

 \rightarrow relevant for nuclear/high-denisty matter physics and astrophysics of NS (NS cooling, SN explosions, NS mass distribution, mass gap, ...)

Finite-size effects during late inspiral

Measurement

► Lambda < ~650

 \rightarrow Means that very stiff EoSs are excluded

- Somewhat model-dependent
- Better constraints expected in future as sensitivity increases

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

Abbott et al. 2017, 2019 see also later publications by Ligo/Virgo collaboration, De et al. 2018

- Current constraints from LIGO/Virgo through tidal effects during inspiral
- Recall strong correlation between tidal deformability and NS radius
- Current constraints roughly compatible with current knowledge from chiral EFT (depending on cut off, e.g. Tews et al 2018)

Ligo/Virgo collaboration 2018

Torres-Riva et al 2019

Collapse behavior and multi-messenger EoS constraints

 $\longrightarrow M_{
m thres} = (3.45 \pm 0.05) \ M_{\odot}$ (for this particular EoS)

Collapse behavior: Prompt vs. delayed (/no) BH formation

<u>Relevant for:</u> EoS constraints through M_{max} measurement, Conditions for short GRBs, Mass ejection, Electromagnetic counterparts powered by thermal emission, NS radius constraints !!!

Collapse behavior

EoS dependent - somehow M_{max} should play a role

Simulations reveal M_{thres}

TOV properties of nonrotating						
stars, i.e. EoS characteristics						
	<i>M</i> _{max}	<i>R</i> _{max}		$R_{1.6}$	$M_{\rm thres}$	
EoS	(M_{\odot})	(km)	C_{\max}	(km)	(M_{\odot})	
NL3 [37,38]	2.79	13.43	0.307	14.81	3.85	
GS1 [39]	2.75	13.27	0.306	14.79	3.85	
LS375 [40]	2.71	12.34	0.325	13.71	3.65	
DD2 [38,41]	2.42	11.90	0.300	13.26	3.35	
Shen [42]	2.22	13.12	0.250	14.46	3.45	
TM1 [43,44]	2.21	12.57	0.260	14.36	3.45	
SFHX [45]	2.13	10.76	0.292	11.98	3.05	
GS2 [46]	2.09	11.78	0.262	13.31	3.25	
SFHO [45]	2.06	10.32	0.294	11.76	2.95	
LS220 [40]	2.04	10.62	0.284	12.43	3.05	
TMA [44,47]	2.02	12.09	0.247	13.73	3.25	
IUF [38,48]	1.95	11.31	0.255	12.57	3.05	

 Merger property from simulations

Bauswein et al. 2013

Smooth particle hydrodynamics + conformal flatness

Threshold binary mass

- Empirical relation from simulations with different M_{tot} and EoS
- Fits (to good accuracy):

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{\rm max}) = \left(-3.38 \frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max}$$

$$M_{\rm thres} = M_{\rm thres}(M_{\rm max}, R_{1.6}) = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

Both better than 0.06 M_{sun}, (meanwhile more ~20 models)

bodels)

$$k = M_{\rm thres}/M_{\rm max}$$

$$x = 1.45$$

$$0 \times x \times x$$

$$1.45$$

$$0 \times x \times x$$

$$1.35$$

$$0.22$$

$$0.24$$

$$0.26$$

$$0.28$$

$$0.3$$

$$0.32$$

$$C_{\rm max}, C_{1.6}^{*}$$

×

Bauswein et al 2013

EoS constraints from GW170817*

\rightarrow lower bound on NS radii

(recall: upper bound from tidal deformability)

* See also Margalit & Metzger 2017, Shibata et al. 2017, Radice et al. 2018, Rezzolla et al. 2018, Ruiz & Shapiro 2018, ... for other EoS constraints in the context of GW170817

A simple but robust NS radius constraint from GW170817

High ejecta mass inferred from electromagnetic transient

(high compared to simulations)

- \rightarrow provides strong support for a delayed/no collapse in GW170817
- \rightarrow even asymmetric mergers that directly collapse do not produce such massive ejecta

Reference	$m_{ m dyn} \left[M_{\odot} ight]$	$m_{ m w}\left[M_{\odot} ight]$
Abbott et al. (2017a)	0.001 - 0.01	-
Arcavi et al. (2017)	-	0.02 - 0.025
Cowperthwaite et al. (2017)	0.04	0.01
Chornock et al. (2017)	0.035	0.02
Evans et al. (2017)	0.002 - 0.03	0.03 - 0.1
Kasen et al. (2017)	0.04	0.025
Kasliwal et al. $(2017b)$	> 0.02	> 0.03
Nicholl et al. (2017)	0.03	_
Perego et al. (2017)	0.005 - 0.01	$10^{-5} - 0.024$
Rosswog et al. (2017)	0.01	0.03
Smartt et al. (2017)	0.03 - 0.05	0.018
Tanaka et al. (2017a)	0.01	0.03
Tanvir et al. (2017)	0.002 - 0.01	0.015
Troja et al. (2017)	0.001 - 0.01	0.015 - 0.03

Figure 1. NGC4993 grz color composites ($1'_5 \times 1'_5$). Left: composite of detection images, including the discovery z image taken on 2017 August 18 00:05:23 UT and the g and r images taken 1 day later; the optical counterpart of GW170817 is at R.A., decl. =197.450374, -23.381495. Right: the same area two weeks later.

Soares-Santos et al 2017

Compilation in Cote et al 2018

- Ejecta masses depend on EoS and binary masses
- Note: high mass points already to soft EoS (tentatively/qualitatively)
- Prompt collapse leads to reduced ejecta mass
- ▶ Light curve depends on ejecta mass:
 → 0.02 0.05 M_{sun} point to delayed collapse

Compilation Wu et al 2016: dynamical and secular ejecta comparable

Only dynamical ejecta

Bauswein et al. 2013

Collapse behavior

(1) If GW170817 was a delayed (/no) collapse:

 $M_{\rm thres} > M_{\rm tot}^{GW170817}$

(2) Recall: empirical relation for threshold binary mass for prompt collapse:

$$M_{\rm thres} = \left(-3.38 \frac{G M_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max} > 2.74 M_{\odot}$$

(with M_{max}, R_{max} unknown)

(3) Causality: speed of sound $v_S \le c$

$$\Rightarrow M_{\max} \le \frac{1}{2.82} \frac{c^2 R_{\max}}{G}$$

Putting things together:

$$M_{\rm tot}^{GW170817} \le \left(-3.38 \frac{G M_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max} \le \left(-\frac{3.38}{2.82} + 2.43\right) \frac{1}{2.82} \frac{c^2 R_{\rm max}}{G}$$

 \rightarrow Lower limit on NS radius

Bauswein et al. 2017

$$M_{\rm thres} = \left(-3.38 \frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max}$$

 $\overline{M_{\rm thres}} \ge 1.2 \overline{M_{\rm max}}$

Bauswein et al. 2017

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

$$v_S = \sqrt{\frac{dP}{de}} \le c \rightarrow M_{\max} \le \kappa R_{1.6} \Rightarrow M_{\text{thres}} \ge 1.2M_{\max}$$

NS radius constraint from GW170817

- ► R_{max} > 9.6 km
- ► R_{1.6} > 10.7 km
- Excludes very soft nuclear matter

Bauswein et al. 2017

Radice et al 2018

Radius vs. tidal deformability

Bauswein, unpubl.

- ► Radius and tidal deformability scale tightly → Lambda > 210
- Limit cannot be much larger otherwise we could get direct collapse / dim counterpart (unless one weakens some of the conservative assumptions)
- ▶ Radice et al. 2018 followed a very similar argument claiming Lambda > 400 (300 in Dai 2019)
 → only 4 EoS considered no complete coverage existing simulation data/parameter space
 - \rightarrow no argument why the fifth EoS shouldn't lie at Lambda<400 (see also Tews et al. 2018)
 - \rightarrow full EoS dependence has to be investigated via Mthres

Discussion - robustness

- ► Binary masses well measured with high confidence error bar
- Clearly defined working hypothesis: delayed collapse
 - \rightarrow testable by refined emission models
 - \rightarrow as more events are observed more robust distinction
- Very conservative estimate, errors can be quantified
- Empirical relation can be tested by more elaborated simulations (but unlikely that MHD or neutrinos can have strong impact on M_{thres})
- Confirmed by semi-analytic collapse model
- ► Low-SNR constraint !!!

Future

- Any new detection can be employed if it allows distinction between prompt/delayed collapse
- ► With more events in the future our comprehension of em counterparts will grow → more robust discrimination of prompt/delayed collapse events
- Low-SNR detections sufficient $!!! \rightarrow$ that's the potential for the future
 - \rightarrow we don't need louder events, but more
 - \rightarrow complimentary to existing ideas for EoS constraints

Future detections (hypothetical discussion)

→ as more events are observed, bands converge to true M_{thres} → prompt collapse constrains M_{max} from above

Bauswein et al. 2017

Semi-analytic model: details

- Stellar equilibrium models computed with RNS code (diff. Rotation, T=0, many different microphysical EoS) => turning points => M_{stab}(J)
- ► Compared to J(M_{tot}) of merger remnants from simulations (very robust result) → practically independent from simulations

Bauswein & Stergioulas 2017

Semi-analytic model reproducing collapse behavior

×

0.32

Bauswein et al 2013: numerical determination of collapse threshold through hydrodynamical simulations

Solid line fit to numerical data Crosses stellar equilibrium models:

- prescribed (simplistic) diff. rotation
- many EoSs at T=0
- detailed angular momentum budget !
- => equilibrium models qualitatively reproduce collapse behavior
- even quantitatively good considering the adopted approximations

Future: Maximum mass

Empirical relation

$$M_{\rm thres} = \left(-3.6 \frac{G M_{\rm max}}{c^2 R_{1.6}} + 2.38\right) M_{\rm max}$$

- Sooner or later we'll know R_{1.6} (e.g. from postmerger) and M_{thres} (from several events through presense/absence of postmerger GW emission or em counterpart)
 - => direct inversion to get precise estimate of M_{max}

(see also current estimates e.g. by Margalit & Metzger, Rezzolla et al, Ruiz & Shapiro, Shibata et al., ...)

Postmerger GW emission* (dominant frequency of postmerger phase)

 \rightarrow determine properties of EoS/NSs \rightarrow complementary to inspiral

 not detected for GW170817 – expected for current sensitivity and d=40 Mpc (Abbott et al. 2017)

Postmerger

Dominant postmerger oscillation frequency f_{peak} Very characteristic (robust feature in all models)

Gravitational waves – EoS survey

characterize EoS by radius of nonrotating NS with 1.35 $\rm M_{sun}$

Bauswein et al. 2012

- Pure TOV/EoS property => Radius measurement via f_{peak}

Here only 1.35-1.35 Msun mergers (binary masses measurable) – similar relations exist for other fixed binary setups !!!

~ 40 different NS EoSs

Gravitational waves – EoS survey

characterize EoS by radius of nonrotating NS with 1.6 $\rm M_{sun}$

Bauswein et al. 2012

Pure TOV/EoS property => Radius measurement via f_{peak}

Smaller scatter in empirical relation (< 200 m) \rightarrow smaller error in radius measurement Note: R of 1.6 M_{sun} NS scales with f_{peak} from 1.35-1.35 M_{sun} mergers (density regimes comparable)

GW data analysis: Clark et al 2014, Clark et al 2016, Chatziioannou et al 2017, Bose et al. 2018, Breschi et al 2019, $\dots \rightarrow$ detectable at a few 10 Mpc

Observable signature of (QCD) phase transition

Phase diagram of matter

Does the phase transition to quark-gluon plasma occur (already) in neutron stars or only at higher densities ?

EoS with 1st-order phase transition to quark matter

Bauswein et al. 2018

- EoS from Wroclaw group (Fischer, Bastian, Blaschke; Fischer et al. 2018) as one example for an EoS with a strong 1st-order phase transition to deconfined quarks
- Difficult to measure transition in mergers through inspiral: Lambda very small, high mass star probably less frequent

Phase transition

► Even strong phase transitions leave relatively weak impact on tidal deformability

 7 different models for quark matter: different onset density, different density jump, different stiffness of quark matter phase

Bauswein et al. 2019

EoSs from Wroclaw group

1.35-1.35 Msun - DD2F-SF-1

Merger simulations

► GW spectrum 1.35-1.35 Msun

But: a high frequency on its own may not yet be characteristic for a phase transition

- \rightarrow unambiguous signature
- $(\rightarrow$ show that all purely baryonic EoS behave differently)

Signature of 1st order phase transition

- Tidal deformability measurable from inspiral to within 100-200 (Adv. Ligo design)
- Postmerger frequency measurable to within a few 10 Hz @ a few 10 Mpc (either Adv. Ligo or upgrade: e.g Clark et al. 2016, Chatzioannou et al 2017, Bose et al 2018, Torres-Rivas et al 2019)
- ▶ Important: "all" purely hadronic EoSs (including hyperonic EoS) follow fpeak-Lambda relation \rightarrow deviation characteristic for strong 1st order phase transition

Conclusions

- ▶ NS radius must be larger than 10.7 km (very robust and conservative)
- More stringent constraints from future detections
- ► NS radius measurable from dominant postmerger frequency
- Explicitly shown by GW data analysis
- Threshold binary mass for prompt collapse \rightarrow maximum mass M_{max}
- Strong 1st order phase transitions leave characteristic imprint on GW (postmerger frequency higher than expected from inspiral)
- ► Complementarity of inspiral and postmerger phase → postmerger probes higher density regime

Chatzioannou et al 2017