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MOTIVATION

Spin misalighments in binary black holes can
give insights into the formation of the binary,
e.g., supernova kicks.

LIGO/Virgo parameter estimation results
currently give the tilt angles at a GWV frequency
close to merger (e.g., 20 Hz).

Example errors on tilt |
for a (10, 1.4) Msun system

To interpret formation channels, one wants to
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One can compute these tilts at infinity e
efficiently using precession-averaged evolution o0l — - -
[Kesden et al,, PRL (2015); Gerosa et al., PRD Network SNR

(2015); Chatziioannou et al., PRD (2017)] Vitale et al., PRL (2014)



MOTIVATION (CONT)

However, precession-averaged evolution is only valid when the precession
timescale is sufficiently large, so not too close to merger.

One thus has to evolve the spins backwards with orbit-averaged evolution

before applying the precession-averaged evolution.
[It might even be necessary to evolve backwards without any averaging if the reference frequency
at which the spins are given is sufficiently close to merger. However, we have not yet tried this.]

Additionally, the standard precession-averaged evolution (implemented in, e.g.,
the PRECESSION package [Gerosa and Kesden, PRD (2016)]) does not deal
well with mass ratios close to unity (the tilts at infinity are not well-defined for
exactly equal masses), and LIGO posterior samples have mass ratios of up to

~0.99999.



OUR WORK

We have regularized the precession-averaged equations so that they
are numerically stable for mass ratios close to unity.

Additionally, we have noted that one can simplify the formalism (and
make it numerically more stable) by linearizing in certain limits, and
obtained rigorous bounds for the error incurred by this linearization.

We are currently investigating the orbital velocity at which one
needs to transition from orbit-averaged evolution to precession-
averaged evolution to obtain the tilts at infinity with a given accuracy.



PRECESSION-AVERAGED
EVOLUTION

The idea of precession-averaged evolution is
that there is a separation of timescales torp <<
torec << trRr When the binary is well separated—
roughly, torec/torb ~ /M and trr/tprec ~ (r/M)3/2,

Thus, one can evolve the spins on the radiation-
reaction timescale, averaging over the
precession timescale.

One additionally notes that the 2PN spin
evolution equations conserve the effective spin,

so that the magnitudes of the total spin S, illustration from
orbital angular momentum L, and total angular Gerosa et al.,
momentum ] contain all the information about PRD (20 | 5)

the spin evolution.



TILTS AT INFINITY

Following Gerosa et al., PRD (2015), one computes the tilts at
infinity using
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COMPUTING <S2>pg
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SIMPLIFYING THE EXPRESSION
FOR <52>pr

When S§ is large, e.g., when L is large, then it is often not obtained numerically
very accurately.

Fortunately, in that case m is small, so one can linearize <5$2>; in m, giving a result
independent of S2:

(S%),, — %(53 +S%)+0(m?).

Using Taylor’s theorem with remainder and standard inequalities, one can obtain

the following bound on m for the linearization to be accurate to Ojin. (This is a
simplified version that is slightly weaker than the full bound, but is easier to work

with.)

1
m < min |0.01, 15.60);, max (1, S_2|_ ] )]



REGULARIZING THE EXPRESSIONS
FOR THE TILTS AT INFINITY

In order to obtain an expression for the tilts at infinity that is well behaved for
q close to unity, we note that S is also conserved for q = I.

The g — | limit is singular, but we can still use the q = | results to obtain our
regularized expressions.WWe have

so with € := | - g, we take / initial value of S2
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REGULARIZING THE EXPRESSIONS
FOR THE TILTS AT INFINITY

In fact, we can write

so we take

and have



FQUATION FOR Fe¢q

We find that
dkeq o2
du — <S >Pr
where
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and

q(1 — ¢*)u?S® 4+ BS*+CS?*+ D =0,

so we can apply all our previous results about linearizing in m.



DISCUSSION

With this regularization, we obtain numerically stable results for almost all cases even with
mass ratios up to ~0.99999.

However, there are still some fairly innocuous-seeming (though special) cases where the

evolution fails, e.g., masses of 35 and 34.9 Msun, and parallel spins of magnitude 0.95 in the
orbital plane. (Such cases also fail with the PRECESSION code.)

It is possible that this issue might be fixed if we were able to solve a quadratic instead of a
cubic in cases where the leading coefficient of the cubic is small.

q(1 — ¢*)u?S° 4+ BS*+CS?*+ D =0,

However, | have yet to derive a rigorous bound for this case, so | have not tried it in the code.

Nevertheless, these cases are special enough that they are unlikely to be a problem for the
application to GW posterior samples.



ORBIT-AVERAGED SPIN
EVOLUTION

We are currently experimenting with the LALSimulation orbit-averaged spin
evolution (from SimlInspiralSpinTaylorPNEvolveOrbit). This is reasonably fast, but
not optimized for this sort of evolution.

We have found that one needs quite low transition frequencies (< 0.1 Hz for a
total detector frame mass of 80 Msun, or an orbital velocity of < 0.05c) to obtain
good accuracy for the tilts at infinity.

So far, we do not find as nice convergence with the transition frequency as we
might like, so we likely need to consider even lower transition frequencies, for
which optimization of SimlnspiralSpin TaylorPNEvolveOrbit may be necessary.

However, we do find that the errors mostly decrease with decreasing transition
frequency.
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ERRORS WITH ORBIT-AVERAGED EVOLUTION
—RANDOM BINARY PARAMETERS
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ERRORS WITH ORBIT-AVERAGED EVOLUTION
—RANDOM BINARY PARAMETERS
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CONCLUSIONS

Precession-averaged evolution is a powerful tool for obtaining the tilt angles at
infinity, which are useful in comparing with binary evolution, e.g., supernova kicks.

We have derived regularized equations that allow us to obtain the tilts at infinity
for mass ratios close to unity (e.g., 0.99999) and a rigorous error bound on the
linearization needed to help the numerical stability of the equations in certain
regimes.

We are currently checking the transition velocity from orbit-averaged to
precession-averaged evolution needed to obtain a given accuracy for the tilts at
infinity.

The regularized precession-averaged evolution code will be released as part of
LALSuite when we have finalized the interface with the orbit-averaged evolution.



