Synthetic catalog of black holes in the Milky Way

Aleksandra Olejak, Krzysztof Belczynski, Tomasz Bulik and Malgorzata Sobolewska

Project motivation

- $\cdot\,$ Most of Galactic black holes are so far not detected.
- Open access database for observers which contain basic statistical properties of Galactic BHs. (https://bhc.syntheticuniverse.org/)
- Prediction of origins and binary black boles configurations.
- Microlensing (number of events), BH binaries (parameters), GW (Galactic merger rates)

An artist's portrayal of a BH in the Milky Way. Corvin Zahn

Method

- Updated synthesis population (StarTrack code)
- Binary and single star systems evolution with standard physical model including:
 - + natal kicks from Maxwellian velocity distribution with fallback, v $\propto \frac{1}{M}$ (Hobbs et al. 2006)
 - rapid SN engine reproducing first mass gap (Fryer et al. 2012).
 - PPN/PPSN limit reproducing second mass gap (Woosley 2017, Leung et al. 2019)
 - + Z_{\odot} =0.014 (Asplund et al. 2009)
 - $\cdot\,$ two scenarios of HG star in common envelope (model A and B)

New SFR and chemical evolution model

Old model: one Galactic component (disk), const. SFR, const. metallicity **New model:**

Disk mass: $5.2 \times 10^{10} M_{\odot}$ Thin Disk: age: 0-10 Gyr Z: 0.1-1.0 Z_{\odot} Thick Disk: age: 9-11 Gyr Z: 0.25 Z_{\odot}

 $\begin{array}{l} 0.9\times 10^{10}~M_{\odot} \\ age:~0\mbox{-}10~Gyr \\ Z:~0.1\mbox{-}1.5~Z_{\odot} \end{array}$

 $2.0 \times 10^9 \ M_{\odot}$ age: 10-12 Gyr Z: 0.01-0.02 Z $_{\odot}$

Results

Single black holes

1.6×10^8 single black holes

Initially: 2/3 of stars in binary systems...finally: 95 % of black holes are single.

Single BHs origins:

Binary black holes

9.3×10^6 black holes in binary system Majority BH-BH systems (natal kicks)

Mass distributions of Galactic black holes

- Average mass of single BH \sim 13M $_{\odot}$, average mass of BH in binaries \sim 19M $_{\odot}$
- No first and second mass gap in single BHs distribution (mergers)
- Narrow, isolated peak near a 2.5 M_{\odot} (binaries).

Velocity distribution

Total velocity: sum of Galactic potential and stellar evolution. Approximated form of Galactic rotational curve (V_r): $V_r = 220 \text{ km/s}$ for disk and halo and $V_r = 220 \text{ km/s} \times r/R_b$ for bulge

Velocity distribution

About 5% of single BHs ($\sim 8 \times 10^6$) and less than 0.001 % of binary BHs (~ 100) have velocities greater than 550 km/s, the lowest escape velocity from Milky Way.

Galactic merger rates

- The higher SFR in the given time, the higher merger rates. - Metallicity strongly influences DCO merger rates, especially for BH-BH systems -NS-NS, BH-NS rates quite constant.

Galactic merger rates

Table 1: Current Galactic merger rates.

System	[Myr ⁻¹]
BH-BH	81.1/(3.1)
BH-NS	8.5/(0.7)
NS-NS	59.0/(14.1)

Galactc BH population:

- + 1.6 \times 10^8 single BHs with average mass \sim 13.0 M_\odot and 9.3 \times 10^6 BHs in binaries with average mass \sim 19.0 M_\odot
- Most of Galactic black holes (95%) are single. Main formation channels: 35% single star evolution, 40% binary systems merger, 25% disrupted binary systems
- Black holes in binary systems are 5% of Galactic BH population. Binary BHs are mostly (80%) BH-BH systems
- $\cdot\,$ Max. single BH mass in Galactic halo 130 M_{\odot} (merger)
- Current Galactic merger rates estimated at: 81/3 Myr1, for BH-BH, 9/1 Myr1, for BH-NS and 59/14 Myr1 for NS-NS systems.

Aim: Amount of halo mass in stellar origin BHs outside the observation range.

Method: Lower limit: microlensing timescales $\sim 20 M_{\odot},$ upper limit: wide binaries in halo $\sim 100 M_{\odot}.$

Result: Total M_{BH} = $5.2\times10^7 M_{\odot},$ only \sim 0.005% of total Galactic halo mass ($10^{12} M_{\odot})$