

אוניברסיטת בן-גוריון בנגב Ben-Gurion University of the Negev

The NEXT experiment

Status and prospects

G. Martínez Lema¹ for the NEXT Collaboration

¹ Ben Gurion University of the Negev

G. Martínez Lema – Status of NEXT - LIDINE, 22/09/2022

Double beta decay

- Second order weak process $\rightarrow T_{1/2} \sim 10^{19-22}$ y
- Neutrinoless decay mode available if neutrinos are Majorana particles
 - T_{1/2} > 10²⁶ y
- Next generation of experiments will probe the Inverted Ordering
 - Expected signal in ¹³⁶Xe ~0.3 3 evt/tonne/y

2

G. Martínez Lema – Status of NEXT - LIDINE, 22/09/2022

Neutrino Experiment with a Xenon TPC

- Search for neutrinoless double beta decay ($\beta\beta$ 0v) in ¹³⁶Xe
- High pressure TPC with EL amplification
 - High density
 - Excellent energy resolution < 1% FWHM @ Q_{BB}
 - **Event topology** \rightarrow background discrimination
- Installed @ Laboratorio Subterráneo de Canfranc, in Spain

NEXT: Status

- Concluded a 4-year physics program with the NEXT-White demonstrator
 - ~5 kg of 136 Xe-enriched gas @ 10 bar
 - Demonstrated energy resolution < 1% FWHM @ Q_{BB}
 - Demonstrated topological background suppression capabilities
 - Reported **competitive ββ2v half life measurement** using an innovative method
- Beginning construction and commissioning of the NEXT-100 detector
 - ~100 kg of ¹³⁶Xe-enriched gas @ 15 bar
 - Aimed to demonstrate quasi-background free conditions and prepare for a tonne-scale detector
 - ββ0v search
- Developing an R&D program for future detectors
 - Improved topology
 - Background free experiment using Barium Tagging

NEXT: design

- High pressure vessel
- Transparent electrodes
 - Drift region
 - EL region
- TPB on the walls
 - Shift VUV to blue
- Asymmetric detector
 - PMTs for t0 and calorimetry
 - SiPMs for tracking

NEXT: principle of operation

- Interactions in the active volume produce scintillation photons and ionization electrons
 - Scintillation detected by PMTs \rightarrow S1 \rightarrow t0
 - Electrons drift under a low electric field towards the EL region
- A strong field induces electroluminiscence (EL) \rightarrow S2
 - EL photons collected by all PMTs provide a measurement of the deposited energy
 - EL photons collected by a small amount of SiPMs provide tracking →event topology

NEXT-White

G. Martínez Lema – Status of NEXT - LIDINE, 22/09/2022

NEXT-White

NEXT-White: energy resolution

- Demonstrated an energy resolution < 1% FWHM @ Q_{ββ} using ¹³⁷Cs and ²⁰⁸Tl γ sources
- Long tracks corrected using calibration maps produced with ^{83m}Kr decays

J. Renner et al JHEP 2019 230

G. Martínez Lema – Status of NEXT - LIDINE, 22/09/2022

Topological background discrimination: principle

- An electron scattering through the gas deposites a large amount of energy at the end → bragg peak ("blob")
 - $\beta\beta$ events emit 2 electrons \rightarrow **2 blobs**
 - Background events (γ) produce 1 electron \rightarrow **1 blob**

Topological background discrimination: principle

- Measure energy within the two ends of the track
- Different distributions \rightarrow Require a minimum energy for lower energy blob

12

Track reconstruction

- New method based on the Richardson-Lucy deconvolution
 - Removal of diffusion and light emission effects
- Enhanced spatial resolving power

Topological background discrimination: performance

- **96% background rejection** (x27 reduction) -
- 57% signal efficiency -

14

$\beta\beta 2v T_{1/2}$ measurement

- Two runs of data
 - 136 Xe-depleted (2.6%) gas \rightarrow Background characterization
 - ¹³⁶Xe-enriched (90%) gas \rightarrow Signal analysis
- Same background rate on both runs
- Two approaches:
 - Background-model-based
 - Traditional method relying on characterization of backgrounds
 - Direct background substraction
 - Unique method in the field
 - Minimal dependence on background model
- Both yield competitive and compatible results

$\beta\beta 2v T_{1/2}$ measurement: bkg-model-based analysis

- Energy spectra for the enriched and depleted runs
- Fitted both simultaneously with
 T_{1/2}^{2v} and ⁶⁰Co, ⁴⁰K, ²¹⁴Bi and ²⁰⁸TI abundances as free parameters

$${
m T}_{1/2}^{2
u} = ig(2.14 \ {}^{+0.65}_{-0.38}({
m stat}) \ {}^{+0.46}_{-0.26}({
m sys})ig) imes 10^{21}$$

$\beta\beta 2v T_{1/2}$ measurement: direct background subtraction

- Subtracted spectrum (enriched minus depleted)
 - Minimal assumptions on background model
- Fitted with $T_{1/2}^{2v}$ as the only free parameter

A $\beta\beta$ candidate

NEXT-100

NEXT-100

- Expected background rate 4x10⁻⁴ counts/keV/kg/year
- Goals
 - Improve E resolution closer to 0.5% FWHM @ Q_{BB}
 - Assess background model
 - Demonstrate quasi background-free conditions at the 100 kg scale (≤ 1 evt/year)
 - ββ0v search
 - Prepare for a tonne-scale detector
- Main differences with respect to NEXT-White
 - Larger SiPM area by 60%
 - Teflon masks on tracking plane \rightarrow improved topology
 - Thicker copper shield (x2)
 - Increased SiPM pitch

NEXT-100 @ LSC

G. Martínez Lema – Status of NEXT - LIDINE, 22/09/2022

The future: NEXT-HD

- Baseline concept for a tonne scale detector
- 1 tonne of ¹³⁶Xe-enriched gas
- Symmetric TPC with central cathode
- Dense SiPM plane readout
- Energy measurement through optical barrel fiber
 - Alternative R&D projects in development
- Low diffusion Xe/He mixtures→better topology
- Water tank
 - Muon veto
 - Neutron absorber
- Expected sensitivity ~10²⁷ y
- Estimated to start construction on ~2026

G. Martínez Lema – Status of NEXT - LIDINE, 22/09/2022

The future: NEXT-BOLD

- Barium tagging: identification of a 136 Ba atom in coincidence with a $\beta\beta$ candidate event in the ROI
 - Fluorescent molecules capture Ba++
 - In situ detection
 - 100% background reduction \rightarrow **Background-free experiment**
- ββ2v rate within the ROI negligible
- The sensitivity of a tonne-scale NEXT detector with barium tagging ~10²⁸ y
- Active R&D program devoted to developing barium tagging techniques
 - Well funded
 - Multidisciplinary approach
- G. Martínez Lema Status of NEXT LIDINE, 22/09/2022

Outlook

- NEXT concept demonstrated on a 5kg detector (NEXT-WHITE)
 - E resolution < 1% FWHM @ Q_{ββ}
 - 96% background rejection based on topology
 - Competitive **measurement of ββ2v half life** using a innovative method
- NEXT-100 in construction
 - Commissioning to start late 2022
- Tonne-scale detector in development
 - NEXT-HD: Baseline approach \rightarrow continuation of known technology. Sensitivity $\sim 10^{27}$ y
 - NEXT-BOLD: Aggresive approach with Ba tagging \rightarrow **background free**. Sensitivity ~10²⁸ y

Thank you for your attention

E resolution in GXe vs LXe

A. Bolotnikov, B. Ramsey / Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 360-370

Fig. 5. Density dependencies of the intrinsic energy resolution (%FWHM) measured for 662 keV gamma-rays.

^{83m}Kr calibration

- Dual trigger: low E calibration + signal
- Continuous monitoring of the detector
- Corrections due to geometrical innefficiencies and lifetime

High energy calibration

- ¹³⁷Cs and ²⁰⁸Tl sources
 - 662 keV photopeak
 - 1592 keV double escape peak
 - 2614 keV photopeak
- Energy scale
- Energy resolution
- Topology
 - Double escape peak produces
 e⁺e⁻ that have similar topology
 to ββ

Bkg model in NEXT-White

- 4 isotopes: ⁶⁰Co, ⁴⁰K, ²¹⁴Bi, ²⁰⁸TI
- 3 regions: anode, cathode, other
- 2 distributions: energy, drift pos
- Simultaneous fit to both distributions
- Measured spectrum in agreement with MC!

EL deflection

- Not an issue

Bkg budget in NEXT-100 & NEXT-tonne

NEXT-tonne

More on NEXT-tonne

- Modular approach. First module @ LSC
 - Subsequent modules locations TBD
- Gas adivitives
 - ⁴He for Reduced diffussion \rightarrow better topology
 - ³He for cosmogenics ¹³⁷Xe backgrounds
- Estimated background 0.09 0.27 counts /ton/y/ROI
- Ongoing R&D projects
 - High speed cameras for tracking
 - Metalenses for enhanced VUV light collection
 - MCP-PMTs for energy measurement

Low diff

- Transverse diffussion can be reduced ~x4 by adding 10 15 % of ${}^{4}\text{He}$
- Minimal impact on energy resolution and light yield

Optical fiber barrel

- Multi-clad wavelength-shifting fibers
- High coverage
- Similar PDE to PMTs in active volume

NEXT with Barium Tagging

- Single molecule fluorescent imaging employed to detect Ba²⁺ produced in double beta decay.
- NEXT has developed custom barium chemosensing molecules with demonstrated single ion response in dry environments.
- Two approaches:

JINST 11 (2016) 12, P12011; Phys.Rev.A 97 (2018) 6, 062509; Phys. Rev. Lett. 120 (2018) 13, 132504; JINST 15 (2020) 04, P04022; Sci.Rep. 9 (2019) 1, 15097; ACS Sens. 6 (2021) 1, 192–202; arXiv:2109.05902

Realization of efficient, scalable barium tagging in high pressure xenon gas could enable truly a background-free tonne-scale technology.

λ (nm)

8

NEXT-tonne sensitivity

S2 light readout stability

- Data from ^{83m}Kr decays
- Complex dependence on pressure, temperature and electric stability of the EL region

S1 light readout stability

- Data from ^{83m}Kr decays

