

Advances with the Bubble-Free Liquid Hole-Multiplier

A dual-phase LHM concept for scintillation- and electroluminiscence-photon detectors

> G. Martínez Lema^{1,2} **A. Roy**^{1,2} A. Breskin² L. Arazi¹

¹ Ben Gurion University of the Negev ² Weizmann Institute of Science

G. Martínez Lema – Bubble-free LHM - LIDINE. 21/09/2022

The bubble-assisted LHM (BA-LHM)

- CsI-coated perforated electrode (GEM, THGEM, other) immersed in LAr/LXe
- GAr/GXe bubble trapped underneath
- Electrons focused into the holes produce EL signal
 - S1-induced photoelectrons generated by CsI (S1')
 - S2 ionization electrons

G. Martínez Lema – Bubble-free LHM - LIDINE, 21/09/2022

The bubble-assisted LHM (BA-LHM)

- Light pulses detected by photosensors below _
- Stable L-G interface => good energy resolution ($\sigma/E \sim 6\%$ for 5.5 MeV α 's) _
- Accurate position reconstruction (~0.2 mm) _

G. Martínez Lema – Bubble-free LHM - LIDINE. 21/09/2022

Quantum efficiency of CsI in LXe

- $QE_{LXe} \sim 30\% > QE_{vac}$
- Original measurement by

E. Aprile et al., NIM A 338 (1994) 328-335

- Reproduced by us

Erdal et al. LIDINE 2019

Roy et al. LIDINE 2021

* Higher QE attributed to a change in the work function due to polarization of the medium

BA-LHM: Photon detection efficiency (PDE)

- PDE estimated from COMSOL + measured QE vs E in LXe
 - Expected ~18 % for THGEM ~25 % for SC-GEM
 - Measured ~1 % for THGEM ~3.5% for SC-GEM
- Main hypothesis →Low e⁻ transfer efficiency across the bubble interface

5

Bubble-free LHM (BF-LHM)

- L-G interface moved away from the electrode
- Two electrodes
 - L-THGEM: fully immersed and coated with CsI on the bottom for VUV detection
 - G-THGEM: kept in gas phase.
 Avalanche + EL amplification in holes
- Ionization electrons & photoelectrons transfered efficiently through L-THGEM holes into gas
- Strong extraction field between the electrodes
 - **Known** high extraction efficiency into gas
- Avalanche + EL light collected by photosensors on top

Bubble-free LHM: Advantages

- Flat L-G interface
 - Expected high PDE @ 175 nm
- Single photons induce large signals
 - Dark counts negligible \rightarrow SiPMs, CMOS, etc.
- Light yield *localized* to the G-THGEM holes
 - Variations on the Liq-Gas interface not a concern
 - Fast signals
- Good expected position resolution

Bubble-free LHM: Status

- Demonstrated a high electron transfer efficiency across the L-THGEM <u>RD-51 miniweek 02/2022</u>
 - Photoelectrons and ionization electrons
- Measured a higher PDE relative to the bubble-assisted LHM (this talk)
- Observed large and fast EL signals (this talk)

Preliminary results

Electron transfer efficiency across the L-THGEM

- High transfer efficiency for both S1'-like photoelectrons and S2 ionization electrons

A simplified setup: dual-phase with single-THGEM

- Simple dual phase setup
- L-THGEM immersed and coated with Csl for VUV detection
- Mesh in the gas phase to create an extraction field
 - EL amplification in the gap
- Aimed to measure PDE

THGEM parameters

0.3 mm hole \emptyset 50 µm rim 0.7 mm pitch 0.4 mm thickness 20 mm \emptyset CsI spot

G. Martínez Lema – Bubble-free LHM - LIDINE, 21/09/2022

Example waveform

- A typical waveform produced by an $^{241}\text{Am}\ \alpha$ interaction

PDE measurement

- PDE measurement based on the ratio of S1' and S2 signal strengths 2021 JINST TH 002
- Similar voltage configuration to bubble-assisted LHM
- BA-LHM PDE ~ 0.9%
- Observed a PDE increase of ~x4.7 in the BF-LHM

G. Martínez Lema – Bubble-free LHM - LIDINE, 21/09/2022

PDE optimization

- With the current configuration the PDE can be improved by
 - Lowering the drift field \rightarrow decrease of e⁻ backscattering
 - Increasing the extraction field \rightarrow electron loss to the top face of the THGEM
 - Increasing $\Delta V_{THGFM} \rightarrow$ greater effective QE of the photocathode

Optimal PDE

- With a more optimal field configuration, we measure a PDE of 8.3%
- A higher PDE can be achieved with SC-GEMs
 - We expect a **PDE in excess of 20 %** for a BF-LHM with SC-GEMs

G. Martínez Lema – Bubble-free LHM - LIDINE, 21/09/2022

Energy resolution

- Energy resolution for S2 signals worse than expected (~10%)
 - Under investigation (interface instabilities?)

Double-THGEM configuration

- L-THGEM immersed in LXe and coated with CsI for VUV detection
- G-THGEM in gas phase for
 EL stability
- Identical THGEM electrodes

0.3 mm hole \varnothing 50 µm rim 0.7 mm pitch 0.4 mm thickness 20 mm \varnothing CsI spot

G. Martínez Lema – Bubble-free LHM - LIDINE, 21/09/2022

Example waveform: single-THGEM vs double-THGEM

- Higher EL yield than with the single-THGEM configuration under similar conditions

S2 width comparison: single THGEM vs double THGEM

- Faster S2 signals under the appropriate voltage configuration

Variations in the liquid-gas interface

- Liquid level changes, but EL happens mostly within the THGEM holes

Next steps

- Study energy resolution with double-thgem setup
- Compare different GEM structures
 - SC-GEM known to provide better PDE
- Measure absolute PDE in dual-phase configuration

Outlook: a potential dual-phase LHM TPC for Dark Matter

- High PDE

- Unambiguous detection of single-photon S1s
 - Dark counts are no longer a determining factor
 - Lower detection threshold
 - Possible to use SiPMs or CMOS-SPAD
- EL + avalanche light localized to the G-THGEM holes
 - Fluctuations on the L-G interface not critical
 - Fast signals
- No need for grid or meshes in the active volume
 - Improved S1 light collection efficiency
- No need for PMTs
 - Better radiopurity
 - No wasted LXe in the buffer region

Thank you for your attention

Low PDE: why?

- Main hypothesis: low e⁻ transfer
 efficiency across the bubble interface
 - e⁻ stuck and lost to the wall
- Ongoing efforts to understand this effect
 - Bubble physics (A. Tesi etal 2021 JINST 16 P09003)
- A dual-phase configuration seems more adequate

Photon feedback

- We haven't observed a significant amount of photon feedback
- More detailed studies to come

Methodology

- Measure current on different electrodes
 - Each electrode is measured separately
- Transmission efficiency defined as

$$\varepsilon = \frac{I_{collected}}{I_{produced}}$$

S2 ionization electrons

Photoelectron extraction efficiency

Photoelectrons are extracted from a CsI-coated window illuminated by a H₂ lamp and collected on the bottom side of the L-ThGEM

G. Martínez Lema – Bubble-free LHM - RD-51 Miniweek, 08/02/2022

ETE vs ΔV_{THGEM}

ETE vs Edrift

30

EL amplification prior to G-ThGEM crossing

- Some EL light would be produced before crossing the G-ThGEM
 - Most of it will be blocked by the electrode
 - Its effect needs to be studied

PDE

effective light yield:
photons detected per electron in LXe
$$PDE = \frac{N_{pe}^{transferred}}{N_{\gamma}^{PC}}$$

$$S1' = N_{pe}^{transferred} \cdot Y^{eff}$$

$$S2 = N_{e}^{transferred} \cdot Y^{eff}$$
from literature
$$N_{e}^{transferred} = \frac{E}{W_{i}} \cdot R \cdot \varepsilon_{S2}$$
from literature
$$PDE = \frac{W_{sc}}{W_{i}} \cdot \frac{R}{f_{refl} \cdot \frac{\Omega^{PC}}{4\pi}} \cdot \varepsilon_{S2} \cdot \frac{S1'}{S2}$$
measured by us

32