#### 



#### Light Yield Calibration and Stability Throughout MicroBooNE's 5 Years of Data Taking

Vincent Basque For the MicroBooNE Collaboration LiDINE 2022 21/09/2022



### **Short-Baseline Program & MicroBooNE**





- MicroBooNE is a 2.56 m by 2.33 m by 10.36 m LArTPC.
- It ran from 2015 to 2021 (main physics + R&D campaigns).
- Its main physics goal is to determine whether the observed MiniBooNE excess is electron-like or photon-like.
- It will also perform cross section measurements of neutrinoargon, BSM, and LArTPC R&D.



#### **Scintillation Light in MicroBooNE**

- MicroBooNE detects the VUV light using 32 8" Hamamatsu R5912-02 MOD PMTs placed behind acrylic plates painted with TPB + polystyrene.
- Main usage: Identifying in-time TPC events by matching with light flashes (t<sub>0</sub> for x position, rejection of cosmic).
- When a beam neutrino interacts, the PMTs will see an increase in the amount of light in the expected beam-spill time window.







•••



Figure 7: Top: neutrino interaction timing distribution before the reconstruction. Bottom: neutrino interaction timing distribution after the reconstruction. The 81 bunches composing the  $\sim 1.6 \ \mu$ s beam pulse sub-structure are well visible after the reconstruction.





#### MICROBOONE-NOTE-1115-PUB

#### Demonstration of <2 ns timing resolution for neutrino interaction in the MicroBooNE detector

#### 8.1 Detector intrinsic timing resolution

A characterization of the timing resolution versus the total number of detected photons is made. The parameter  $\sigma$  versus the total number of detected photons, shown in Figure 12 right, is fitted using the function:

$$\sigma\left(\langle N_{Ph}\rangle\right) = \sqrt{k_0^2 + \left(\frac{k_1}{\sqrt{\langle N_{Ph}\rangle}}\right)^2} \tag{3}$$

The  $k_1$  parameter is associated to the statistical uncertainty ( $\propto \sqrt{N_{Ph}}$ ). The constant term  $k_0$ , independent of the number of photons detected, is associated with the intrinsic resolution. As for  $R_{Tot}$ , the beam bunch width is subtracted from  $k_0$  obtaining the final value for the intrinsic detector timing resolution ( $R_{Int}$ ) for  $\nu_{\mu}$ CC candidate events:

$$R_{Int} = \sqrt{k_0^2 - \sigma_B^2} = \sqrt{2.17^2 - 1.31^2} = 1.73 \pm 0.04 \, ns \tag{4}$$



#### **Light Detection System Calibration**

- MicroBooNE has developed a continuous calibration of its light response throughout its lifetime to:
  - Ensure a proper understanding of the behaviour and stability of the light detection system over time.
  - Be able to use calibrated physical quantities (photo-electron) in data analyses.
- Calibration consists of:
  - Calibrate continuously the **PMT gains** while the detector is running.
  - Use a data-driven calibration of the **light response variations** over time in terms of light yield in PE/MeV.



**5** Fermilab



#### **PMT Gain calibration**

- PMT gain calibration algorithm has been implemented by:
  - Fitting the response to the Single Photo-Electron (SPE) noise (~200 kHz SPE noise rate).
- The fluctuations over time are caused by a combination of a change of the temperature, HV, intensity/frequency of incident light.



- We look at tracks that pierce the anode or the cathode and look at the amount of light they produce (e.g. lowest and largest drift distance).
- These tracks can be selected without light information.
- Metric for light yield response:
  - Tracks sorted into time bins with equal statistics (varying bin width).
  - PE/cm evaluated using truncated median of distribution PMTs in each bin (disregards the tail and avoids a potentially bias fitting).





- The truncated median is used to populate the light response change by comparing to the first time bin.
- Here we show the relative change for tracks at the **anode (black)** and **cathode (red)**.
- By mid 2018, the light yield at the cathode is nearly ½ of what it was initially but then stabilizes.
- **Important feature**: the amplitude of the decline is different at the anode compared at the cathode.





#### **Light Yield Calibration**

- The calibration values, in blue, are simply the average between the anode and cathode tracks.
- Uncertainty in nature of positiondependence motivates choice of average as calibration. Difference accounted for through systematic uncertainties.
- The calibration is model independent (assumes no absorption).



#### **Effects of the Light Yield Decline on Analyses**

• We account for the light decline with systematic samples.

10

- We need to verify that our physics analyses are still valid are not impacted by the decline.
- We do this by looking at the data/MC ratio of the selected  $v_{\mu}$  is stable between runs and similarly with the  $\pi^{0}$  mass selection.



Run 3

Run 123

MicroBooNE Preliminary

6.67 x 10<sup>20</sup> POT

1.2

1.1

0.9

0.8

0.25

0.50

0.75

1.00

1.25

1.50

data/MC ratio .r 0

• What could cause the light decline?



• What could cause the light decline? Is it the argon?

Is it the PMTs?



What could cause the light decline?
 Is it the argon?



#### Is it the PMTs?



What could cause the light decline?
 Is it the argon?



#### Is it the PMTs?



TPB degradation? PMT QE? Digitization? Gain?

🛟 Fermilab

14 9/21/22 Vincent Basque I Light Yield Stability and Calibration in MicroBooNE – LiDINE 2022

## **Impurities in MicroBooNE**

- The CIEMAT DM group has kindly analyzed a sample of our argon after a discussion at a previous LiDINE. Thank you Roberto Santorelli!
- They have found that we have *more* nitrogen, krypton and even xenon compared to commercial high purity argon.
- These can quench (late light) and/or absorb the light.
- We do not currently have an absolute value of the concentration but good guesses.





#### **On-going Investigation Related to the Light Decline**

- Cosmic muons could potentially bias the light yield spread (anode vs cathode) with:
  - Cherenkov light.
  - Saturate the PMTs with their long tracks.
- We currently have other analyses on going to study the light decline using other samples:
  - Protons from cosmic neutron producing shorter non-MIP particles tracks (see Li Jiaoyang's talk on Friday!)
  - Michel electrons from stopping cosmic muons to give point source-like particles tracks.
- Since MicroBooNE is turned off, we have opportunities for further studies during decommissioning (e.g. TPB ageing, impurities).
- All of this will be important knowledge for the long-term operation of SBN (SBND + ICARUS) and DUNE.



#### Summary

- MicroBooNE is the longest running surface LArTPC and has a lot to share with the community.
- Light yield calibration has been performed from run 1 all the way to run 5! This is an important step for MicroBooNE's physics results to release the second half of our dataset.
- Full cause of the decline is still unknown but there are various investigations in progress.
- A public note on this work can be found <u>MICROBOONE-NOTE-1120-TECH</u>.









#### Thank you!







#### **Short-Baseline Program & MicroBooNE**



Short-Baseline Neutrino (SBN) program at Fermilab consists of 3 LArTPCs at different baselines to probe the MiniBooNE electron-like excess and oscillations with Δm<sup>2</sup> ~1eV<sup>2</sup>. ICARUS -> 476 ton MicroBooNE -> 87 ton SBND -> 112 ton 600 m SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton MicroBooNE -> 87 ton SBND -> 112 ton South Constant State Petector SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 112 ton SBN Far Detector MicroBooNE -> 87 ton SBND -> 110 microBooNE -> 87 ton SBND -> 112 ton SBN Far Detector SBN Far Detector MicroBooNE -> 87 ton SBN Far Detector SBN Far Detector SBN Far Detector MicroBooNE -> 87 ton SBN Far Detector SBN

#### **Neutrino Beam**

- MicroBooNE is a 2.56 m by 2.33 m by 10.36 m LArTPC.
- It ran from 2015 to 2021 (main physics + R&D campaigns).
- Its main physics goal is to determine whether the observed MiniBooNE excess is electron-like or photon-like.
- It will also perform cross section measurements of neutrinoargon and LArTPC R&D.



#### **MicroBooNE Physics Results**

- MicroBooNE has entered a new era since the end of data taking.
- We have released the first round of our flagship analysis: testing the MiniBooNE LEE model using ½ of our dataset
- We have published many many other detector physics, cross section measurements and BSM physics analyses + many more to come!



5+ papers draft on light in MicroBooNE coming up!





## **Scintillation Light in MicroBooNE (2)**

- MicroBooNE sitting on the surface see's a high rate of cosmic background.
- It is important to be able to distinguish those with neutrino beam events.
- When a beam neutrino interacts, the PMTs will see an increase in the amount of light in the expected beam-spill time window.
- Triggering Threshold > 5 PE for 1 PMT.
- Prompt light O(ns) is collected to provide the trigger and timing complimentary to the TPC information.



 It shows that our light yield has been declining after the end of run 1





 It shows that our light yield has been declining after the end of run 1 with a sharper decline during run 2.





- It shows that our light yield has been declining after the end of run 1 with a sharper decline during run 2. Some *stability* has been obtained throughout run 3 and run 4 until the end of run 5 where the light yield has nearly <sup>1</sup>/<sub>2</sub> at the cathode.
- The *gaps* between each run represent the annual beamline shutdown.





# Light Yield Modelling & Decline as Systematic Uncertainty **#BooNP**

- MicroBooNE uses 3 light detector variation samples to account for systematic uncertainties on light modelling and the light yield decline.
  - Light yield down: 25% reduction of MC to match with data.
  - Modified Rayleigh scattering length:
    120 cm scattering value to compare with nominal 60 cm\*.
  - Modified attenuation: 20% 40% quenching and 8 m - 13 m absorption length for lowest and longest drift distances, respectively.

\*MicroBooNE has not yet moved to the ~100 cm RSL value



## Light Triggering in MicroBooNE

- MicroBooNE collects a lot of data but not all of it can be saved and processed.
- Two software triggers exist in MicroBooNE based on amount of Photo-Electrons (PE) measured by the PMTs from prompt light in beam-window:
  - 1. Online  $\rightarrow \rightarrow 7$  PE to not be rejected for BNB.
  - 2. Offline -> >20 PE to be processed and used in current analyses to further reduce computing load.
- What is the 20 PE triggering efficiency?
- Measurement is compared with MC to test of light propagation models for MicroBooNE (e.g. Rayleigh scattering length, light decline).





## **Light Contaminants**

- There has been multiple studies on the effect of various contaminants on the light yield.
- The contaminants shown here are Nitrogen, oxygen, methane.





#### Light Yield in MicroBooNE





 Mapping of the light yield is calculated using a convolution of the Electrical Field map, geometrical acceptance of the PMTs and light propagation from Geant4.
 Fermilab

## Time-Based Light Yield Stability Measurement – Sample

- MicroBooNE uses Anode-Cathode-Piercingcosmic muons to calibrate the light yield (reconstruction minimally dependent on light).
- We look at both tracks at the anode and at the cathode and look at the amount of light they produce (e.g. lowest and largest drift distance).
- Tracks are removed that have:
  - Length: L < 40 cm or L > 400 cm;
  - Total number of photons: PE > 10000 for Anodepiercing or PE > 1000 for Cathode-piercing tracks;
  - Start or end within 50 cm of the cathode for Anode-piercing or anode for Cathode-piercing tracks.







