

Correlated noises for NUV-HD-Cryo SiPMs

Alessandro Razeto – LNGS

LIDINE 2022 - 22/09/2022 University of Warsaw

Optical Cross-Talk

- Biased silicon junctions emits light (Newman 1955)
- In SiPMs 1 photon every 106 e- (Mirzoyan 2009)
 - Emission is peaked at longer wavelengths
- Photon emission is the origin of cross-talk
 - Between SPADS or between SiPMs

Light Emission Microscopy

PD18 – Workshop on PhotoDetectors *D. Strom - Max Planck Institute* https://l.infn.it/strom

Light Emission Microscopy

Hamamatsu LCT4

Cell size = $100 \times 100 \text{ um2}$

Breakdown voltage = 51.89V

CCD Channel [X]

A different strategy

09/21/2022

LAr chambers

LAr chambers

- 5 x 5 x 5.1 cm³ chamber
 - Lined with 3M reflective foil
 - Top & bottom window in fused silica
 - Collection efficiency ~ 85%
- Internal surfaces TPB evaporated
- Top & bottom 5x5 cm2 SiPM tiles
 - 88% SiPM coverage

NUV-HD-Cryo

300

1e-03

100

200

T [K]

09/21/2022

Internal cross-talk

Internal cross-talk

Light yield

Asymmetric setup

Is really eCT?

- The top and bottom windows are replaced ^{ov [V]} with optical filters
 - Optical cross-talk is peaked in RED & IR
- We get the flat line \rightarrow <u>eCT evidence</u>

Symmetric setup		D:		
		Bias	Asymmetric	
contribution	/	Algorithm tMC		С
eCT	\neq	\bar{n}^{pe}	13.0 ± 0.5	12.1 ± 0.3
зе. fcт		C	0.34 ± 0.05	0.34 ± 0.10
	/	\dot{V}_h	5.4	5.4
S Primary	-/	V_e	1.0 ± 0.1	1.0 ± 0.1
₹ 28 ·	//	ξict	53	53
	-	ξfCT	15 ± 1	15
5		ξ_{eCT}	7 ± 1	7 ± 1
10 -		α		
		δ^*		
		$\chi^2/n.d.f.$	4 / 5	3 / 6
0 -			,	,
¹ ² ³ ⁴ ^{overvoltage} [v] ⁷ It is possible to model the gross LY				
$P_{\text{PDE}}(V) = \zeta \cdot P_T^e(V - V_{bd}^A) + (1 - \zeta) \cdot P_T^h(V - V_{bd}^A)$	 Triggering probabilities for h⁺ & e⁻ 			
$\lambda_{\mathrm{xCT}}(V_S, V_T) = \xi_x \cdot (V_S - V_{bd}^C) \cdot P_T^h(V_T - V_{bd}^A)$	 Photon interaction probability 			
$IV_{\alpha}(V) = \frac{\bar{n}^{\mathrm{pe}} \cdot P_{\mathrm{PDE}}(V)}{-}$	Optica	al cross-tall	<	
$\frac{1}{1 - (\lambda_{iCT}(V) + \lambda_{fCT}(V) + \lambda_{eCT}(V))}$	Net as	symptotic L	V	14

Net asymptotic LY

Resolution

On larger detectors?

- Simulated a TPC with ~2000 10x10 cm² SiPM tiles
- With an exposure of 200 t y
- Using a toy Monte Carlo that includes only the SiPM oCT models
 - Optics and disuniformities are not simulated
 - 3 10¹⁰ e⁻ events simulated

- 3 10¹⁰ e⁻ blue-gold
 - 10⁶ n grey
 - Black = 50%
 - Green = 90%
 - Acceptance in red
 - 10 events

Acceptance regions

- 10 e⁻ in 3 10¹⁰ events
 - Leakage 0.1 in 200 t y
 - 10 e- in the acceptance
 - Using Uar (1400 depletion)
 - Binomial energy estimators much better
 - ICT is not accounted

09/21/2022

Projected sensitivity INFN

• A note of caution

- Only oCT and AP are simulated
 - Real experiments would include more disuiniformities
- <u>The projected sensitivity is over-</u> estimated by a factor 2
- An opportune analysis algorithm can mitigate the iCT contribution
 - That is dominant
 - But eCT remains
 - And asymmetric events will be a problem

Conclusions

- The eCT in SiPM is a real effect
 - With possible large effects on experiments
 - A case of a Ar-based experiment was shown
 - It is important to account eCT in reflective chambers
- Solutions are available to reduce it
 - Analysis
 - Fully opaque tranches
 - FBK achieved few % of iCT with metal filled tranches
 - Optical filters to absorb long wavelengths

Backup

