DARWIN observatory

- Ultimate Dark Matter detector and beyond

Andrii TERLIUK on behalf of the DARWIN collaboration

23 September 2022 LIDINE 2022

Continuation of the XENON program

	XENON10	XENON100	XENON1T	XENONnT	DARWIN
Height	15 cm	30 cm	96 cm	148 cm	2.6 m
Diameter	20 cm	30 cm	97 cm	133 cm	2.6 m
Total mass	25 kg	161 kg	3.2 tons	8.3 tons	50 tons
Active mass	14 kg	62 kg	2.0 tons	5.9 tons	40 tons

Dual phase time projection chamber (TPC)

DARWIN "baseline" design

- > Time-projection chamber
 - 40 "active" tons of LXe
 - 2.6 m in diameter and height
 - Baseline: 955+955 3" PMTs
 - PTFE reflectors for better light collection
- Goal low background
 - Deep underground (3500 m.w.e @ LNGS, other labs in consideration)
 - Ultra-low background cryostat
 - Active and passive Rn mitigation
 - Outer neutron and muon veto

> Truly multi-purpose rare-event search experiment!

Rich physics reach

Ultimate WIMP sensitivity

- > Achieve "neutrino fog" with the next generation
- Ultimate sensitivity dominated by neutrino interactions

Solar neutrinos

- > WIMP detectors \rightarrow great tool for solar neutrino studies
- > Detection via elastic electron-neutrino scattering
- > Reach 0.15% with 300 ty exposure
- > Measurement of electron neutrino survival probability and weak mixing angle

Neutrinoless double beta decay

- > 8.9% of ¹³⁶Xe in natural xenon \rightarrow 3.5 tonnes inside the TPC
- > Projected sensitivity after 10 years:

 $T_{1/2} = 2.4 \cdot 10^{27}$ years (90 % C.L.)

Even better sensitivity if better background levels are achieved

Radon background mitigation

- Radon historically main background for Dark Matter searches
- > DARWIN target: ER background dominated by neutrinos
 - Goal 0.1 µBq/kg
 - Level below 1 µBq/kg achieved XENONnT
 - 10x improvement w.r.t. XENONnT

Radon mitigation strategy

Light sensor R&D

- "Baseline" design with PMTs
 - 3" PMTs R11410 (XENONnT, LZ)
 - reliable well-tested solution
 - But: relatively "dirty"

Clean PMT alternative?

> Hybrid sensors?

Silicon PMs

> Liquid hole multipliers?

> Current R&D on quantum efficiency, dark count rates, radioactivity, operations...

Simulation tools development

- Essential tool for detector design: >
 - Sensor type/placing, coating, 4pi geometry, single/dual phase

Gate

Cathode

Anode

Frames

Top screen

Bottom screen

Bottom PMTs

Top PMTs

Understanding limitations and improvement possibilitites

Addressing the scale

- > PANCAKE test platform in Freiburg:
 - 2.7 m diameter, 5 cm LXe height
 - test horizontal components real scale frames, electrodes etc.

- > Xenoscope in Zurich:
 - 16 cm inner diameter, up to 2.6 m LXe height
 - Full scale electron drift demonstration high voltage, drift field properties, purity etc

XENON+LZ+DARWIN = XLZD

- Future merger of collaborations for the next-generation LXe observatory
- Forming XLZD consortium
 - currently 104 group-leaders in 16 countries
 - joint "white paper" on physics reach
 - first in-person meeting at KIT in June 2022
- Follow us at: XLZD.org

Summary

DARWIN – truly multi-purpose detector with extensive physics reach:

2022

- Dark Matter search
- solar neutrinos
- neutrinoless double beta decay
- supernova neutrinos
- axions, neutrino magnetic moment
- > Active R&D and design phase
 - radiopurity mitigation
 - light sensor development
 - mechanical and engineering studies
 - simulation techniques
- New consortium for next generation LXe observatory XLZD (XENON+LZ+DARWIN)

A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

J. Aalbers,^{1, 2} K. Abe,^{3, 4} V. Aerne,⁵ F. Agostini,⁶ S. Ahmed Maouloud,⁷ D.S. Akerib,^{1, 2} D.Yu. Akimov,⁸ J. Akshat,⁹ A.K. Al Musalhi,¹⁰ F. Alder,¹¹ S.K. Alsum,¹² L. Althueser,¹³ C.S. Amarasinghe,¹⁴ F.D. Amaro,¹⁵ A. Ames,^{1, 2} T.J. Anderson,^{1, 2} B. Andrieu,⁷ N. Angelides,¹⁶ E. Angelino,¹⁷ J. Angevaare,¹⁸ V.C. Antochi,¹⁹ D. Antón Martin,²⁰

For more physics topics – community paper: arXiv:2203.02309 [physics.ins-det] S. B J.

E.P. Bernard,^{43,40} G.F. Bertone,¹⁸ P. Bhattacharjee,⁴⁴ A. Bhatti,²⁴ A. Biekert,^{43,40} T.P. Biesiadzinski,^{1,2}
A.R. Binau,⁹ R. Biondi,⁴⁵ Y. Biondi,⁵ H.J. Birch,¹⁴ F. Bishara,⁴⁶ A. Bismark,⁵ C. Blanco,^{47,19} G.M. Blockinger,⁴⁸
E. Bodnia,³⁶ C. Boehm,⁴⁹ A.I. Bolozdynya,⁸ P.D. Bolton,¹¹ S. Bottaro,^{50,51} C. Bourgeois,⁵² B. Boxer,³⁰ P. Brás,⁵³
A. Breskin,⁵⁴ P.A. Breur,¹⁸ C.A.J. Brew,³¹ J. Brod,⁵⁵ E. Brookes,¹⁸ A. Brown,³⁷ E. Brown,⁵⁶ S. Bruenner,¹⁸
G. Bruno,³⁹ R. Budnik,⁵⁴ T.K. Bui,⁴ S. Burdin,³⁸ S. Buse,⁵ J.K. Busenitz,²⁹ D. Buttazzo,⁵¹ M. Buuck,^{1,2}