Production and Testing of the Large-Area Photon Detector ArCLight

September 2022 Jan Kunzmann for the DUNE Collaboration jan.kunzmann@lhep.unibe.ch

^b Universitä1 Bern

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Deep Underground Neutrino Experiment (DUNE)

- DUNE is a long-baseline neutrino oscillation experiment:
 - Determination neutrino mass hierarchy
 - Measurement of the leptonic CP-violating mixing phase

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSI

[B. Abi, 2020, Eur. Phys. J. C 80, 978]

DUNE – Liquid Argon Near Detector (ND-LAr)

- ND-LAr is one of the three detectors in the ND complex
- ND-LAr is a modular liquid argon detector
- It consists of 35 modules
- A modular build up is needed because:
 - The electron drift distance is short
 - The light spatial resolution is high
 - It isolates neutrino interactions when more than one occurs during a beam spill
 - The single modules can be replaced in case of malfunction
- For information on the scintillation light detection performance of two ND-LAr prototype modules see Anja Gauch's talk

UNIVERSITÄT

ALBERT FINSTEIN CENTER

AEC

New technologies for the ND-LAr

- For the modular detector design of the ND-LAr the following technologies are developed:
 - A pixelated charge readout on the anode plane that collects the drifting electrons of the energy deposits

- A resistive field structure that shapes the electric field
- A dielectric light readout that collects the scintillation light along the electric field $_{\rm Jan\ Kunzmann}$

Light detectors for ND-LAr

Direct PMT readout is replaced with low-volume large-area photon detectors: Argon Cube Light (ArCLight) (Bern) Light Collection Module (Dubna)

The advantages of the two modules are that:

- Detectors can be extended along the time projection chamber (TPC) electric field as they are made of dielectric material
- Silicon photon multiplier (SiPM) readout allows a much smaller dead volume compared to traditional PMT readout Jan Kunzmann
 [M. Auger, 2018, Instruments 2, no.1, 3] 5

Light detection with ArCLight

ArCLight is based on ARAPUCA principle

[A.A. Machado and E. Segreto, 2016, JINST 11 C02004]

- VUV scintillation photons (128 nm) are created in the liquid Argon
- TPB* shifts the incoming photons into the blue region (430 nm)
- The plastic shifts the blue photons into green ones (490 nm)
- The dichroic film acts as a mirror for green photons, thereby trapping them
- The green photons in the plastic are collected by six SiPMs

Jan Kunzmann

TPB*: 1,1,4,4-Tetraphenyl-1,3-butadiene

6

UNIVERSITÄT Bern

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSI

• ArCLight is built from the following materials:

Wavelength shifter plastic

1,1,4,4-Tetraphenyl-1,3-butadiene Jan Kunzmann UNIVERSITÄT BERN

ALBERT EINSTEIN CENTER

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

The dichroic film is fixed on an aluminum plate

The film is cleaned with soap

- TPB is deposited on the dichroic film in the coating chamber
- This means that the TPB is sublimated in a vacuumed coating chamber and deposited on the dichroic film
- The coating chamber is evacuated to 10⁻³ mbar and heated up to 220°C

Coating chamber

b UNIVERSITÄT BERN

AEC

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- The coated film is removed from the aluminum plate and glued on the front side of the plastic
- Additionally dichroic film is glued to three narrow sides to act as a reflector and increase the light yield

Coated film is removed from aluminum plate

The end product: An ArCLight

Quality control of ArCLight production

IJ,^b

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- Two quality control tests are used:
 - A quantitative test using LED light to scan the ArCLight measures the light yield response at different positions and shows the performance of the ArCLight
 - There is a qualitative test performed in form of a visual inspection for the overall coverage and detailed inspection with a microscope for the crystal size and shape

UNIVERSITÄT BERN

> AEC ALBERT EINSTEIN CENTER

- ArCLights are scanned with an LED in a black box
- The amount of photons per SiPM per step is recorded

UNIVERSITÄT BERN

> AEC ALBERT EINSTEIN CENTER

- ArCLights are scanned with an LED in a black box
- The amount of photons per SiPM per step is recorded

UNIVERSITÄT BERN

> AEC ALBERT EINSTEIN CENTER

- ArCLights are scanned with an LED in a black box
- The amount of photons per SiPM per step is recorded

^b Universität Bern

> AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- ArCLights are scanned with an LED in a black box
- The amount of photons per SiPM per step is recorded

Jan Kunzmann

Scan test set-up

^b Universität Bern

> AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC

- ArCLights are scanned with an LED in a black box
- The amount of photons per SiPM per step is recorded

Jan Kunzmann

Scan test set-up

UNIVERSITÄT BERN

- Scan of the ArCLights
- The plot on the left shows the sum of the photons for all six SiPMs of an ArCLight per step at each position

- The sum of all photons for all steps and all positions is taken as a criteria for comparison and selection
- The plot on the right shows the performance of all the 22 ArCLights • that are in Bern at the moment Jan Kunzmann

100.0 µm

Visual tests of the ArCLights

- The shape and size of the crystals of the coated TPB
- The homogeneity of the coverage on the plate
- The size of empty spaces without TPB Jan Kunzmann

Microscopic view of TPB crystals of a good coated ArCLight

The performance of an ArCLight depends on:

UNIVERSITÄT BERN

AEC ALBERT FINSTEIN CENTER

Conclusion

- ArCLight is an innovative small-volume light detection system based on ARAPUCA principle that is essential for the ND-LAr
- Bern currently produces ArCLights by depositing TPB on the dichroic film that is mounted on the wavelength shifting plastic
- The comparison of the total amount of photons for one scan and the shape of the crystals indicates that the performance of the ArCLights is better if there is a good coverage with irregular crystals
- R&D continues on the ArCLight to improve:
 - The quality and capacity of the manufactor
 - The photon detection efficiency

Back-up

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle \flat}$

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Near Detector complex

The Near Detector complex consists of three detector systems:

- The ND-Lar:
 - Is a 67-tone liquid argon TPC
 - Has a high resolution imaging capability in high pileup environment
- The TMS (Temporary Muon Spectrometer):
 - Measures the momentum and charge of the muons
 - Will be replaced by the ND-GAr later
- The SAND (System for on-Axis Neutrino Detection):
 - Provides continuous on axis flux monitoring

Jan Kunzmann

[A. Abed Abud, 2021, Instruments 5, no.4, 31] 21

UNIVERSITÄT BERN

> AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSI

Optical adhesive

- 3M[™] Adhesive Transfer Tape 9472LE
- Product features:
 - 3M[™] Adhesive 300LSE is a hi-strength acrylic adhesive that provides a very high bond strength to most surfaces.
 - Excellent bond to low surface energy plastics such as polypropylene and powder coatings.
 - Excellent adhesion to lightly oiled surfaces typical of machine parts.
 - Thickness range of 2.3, 3.6 and 5.2 mils for use on smooth, or rough surfaces

UNIVERSITÄT