

A LARGE FACILITY FOR PHOTOSENSORS TEST AT CRYOGENIC TEMPERATURE

Z. Balmforth, N. Canci*, F. Di Capua, G. Fiorillo, G. Grauso, E. Sandford, Y. Suvorov

INFN Napoli & Università degli Studi di Napoli Federico II

On behalf of the **DarkSide** Collaboration

LIDINE 2022: Light Detection In Noble Elements - Conference Sep 21 – 23, 2022 --- Warsaw - Poland

Summary

- General overview
- Purpose of the photosensors test facility
- Facility description: cryogenics, mechanics, DAQ and electronics
- Test of photosensors
- Characterization of PDUs
- Photosensors main parameters
- Stabilities
- Conclusions

General Overview

- Photosensors play a crucial role in astroparticle physics experiments
- Silicon based photo-detectors are innovative light collecting devices employed in low temperature environment
- SiPM phototosensors represent a successful technology in the field of direct dark matter search and neutrino detectors based on liquified noble gases
- Next generation of large scale noble liquid experiments need a remarkable amount of Silicon photodevices

Purpose of the Photosensors Test Facility

 The DarkSide collaboration started a dedicated development and customization of SiPM technology for its specific needs

- Design, production and assembly of a large surface module of 20x20 cm² to be used as PhotoDetectionUnit (PDU) in the DarkSide-20k experiment have been made
- Production of a large number of such devices (15 m² of active surface in DS-20k detector) requires robust testing and validation process
- A dedicated test facility (PTF) for the PDU tests was designed, integrated and commissioned at INFN Naples laboratory
- Some testing campaigns were alredy performed

Inner detector UAr volume (~50 t)

Outer muon veto

Ti (or SS)

vessel

Facility Description: Overview

- Custom made cryostat located inside the Naples Cryolab cleanroom
- System composed of open double wall vacuum insulated vessel (1.15 m diameter – 1.57 m height) coupled with a single wall domed flange
- Equipped with PT100 temperature/level meter sensors, pressure transducer and analog pressure indicator
- Top flange with CF flanges for electrical and optical feedthroughs
- Double wall vessel with two ports for liquid nitrogen inlet and cold gas venting
- Maximum allowed absolute pressure in the cryostat of 3 bar
- DAQ and electronics close to the setup

Facility Description: Cryogenics

- Facility cryostat directly connected to an external 3000 I LN storage tank (operation pressure of 2.5 bar)
- System controls (proportional and automatic valves) and operating parameters (pressure, temperatues, nitrogen level, etc.) controlled and monitored by a National Instruments PXI computer and LabView-based slow control program
- Pressure in the cryostat (after filling) maintained at a constant value of 1100 mbar by the inline relief valve
- Controlled LN filling (about 7 hrs) and draining (about 15 hrs)

Facility Description: Mechanics

- Dedicated mechanical structure hanged to the domed flange to host PDUs
- Thermal insulating adapters for the hanging structure
- Three horizontal planes allocating 4 PDUs each
- Illumination system for laser light distribution
- PDUs mounted on the proper support plates
- «Fast and safe» removable PDUs structures
- Adjustable distance among planes and illuminating system

Facility Description: Light Distribution

- Hamamatsu PLP Laser 407 nm light emission, fiber splitter (inside the cryostat), 4 diffusor channels to cover the PDU
- Optical feedthrough with two ports each
- Explored configurations: 16 ports optical feedthrough to deliver 16 individual fibers coupled with scintillating plates/rods (test are going on) and diffusers
- Optimize the unifomity for the laser light to be used in calibration runs

Facility Description: DAQ & Electronics

- **Electronics**: 12 channels of L&H voltage (CAEN A2518, A1619) Signal readout: CAEN VX2740 digitizers (48 readout channels)
- **Computing**: DAQ server, analysis and storage server (40 TB), regular transfer of data to CNAF
- **Software**: MIDAS framework, fully integrated controls for Power Supplies, DAQ, Elog, data summaries, slow control history and online monitoring
- Remotely and automated data acquisition runs
- Monitoring of DAQ rate and individual control of channels Dedicated software (*dsanana*) allowing online monitoring of the data used for the majority of the offline reconstruction
- Reconstruction software tool (*PyReco*) used offline

Test of Photosensors: Overview

- PDUs production in NOA and transportation to Naples INFN Cryolab
- Installation of the PDUs in the test facility
- Measurement of IV curves at room and LN temperatures
- Laser calibration runs at different overvoltages for one selected laser intensity
- Check the stabilities with periodic runs
- Measured values of BD voltages, PE positions, S/N ratio, Gain, noise spectra, etc.
- Controlled drain, warm up, cryostat opening at room temperature
- PDUs unmounting, preparing for delivery to INFN-LNGS, storage
- Loading of a new batch

Characterization of PDUs: Overview

PDU scheme of MB4/4

with 16 photodevices and 4 quadrants

Q1 T1	Q1 T2	Q2 T1	Q2 T2
Q1 T3	Q1 T4	Q2 T3	Q2 T4
Q3 T1	Q3 T2	Q4 T1	Q4 T2
Q3 T3	Q3 T4	Q4 T3	Q4 T4

- 16 PDMs grouped into 4 readout channels
- LV: Keysight E3649A dual PS no remote control or history
- HV: Keithley 2450 SMU remote control but no history
- Laser: Hamamatsu PLP-10 pulsed diode laser
- MB4/4 illuminated with 4 laser diffusers from an optical plane below the MB.
- Data taken with both periodic and laser trigger and reconstructed with dsanana
- Different overvoltages of 5-9 VOV (32V 36V) considered
- Four tiles per quadrant powered individually
- Each quadrant read out as a single channel

Characterization of PDUs: IV Curves

 Change in the breakdown voltage as function of temperatures expected for all the quadrants

• Slight discrepancy of the IV curves at higher voltages at LN temperature (111.1-111.7 V) 12

Characterization of PDUs: Gain

Several photoelectron peaks clearly visible in the distribution for each quadrant

Gain at 34 V supplying voltage:

Mean = 240.4 - Std = 2.4

¹³

Characterization of PDUs: Pulse Shape

- $slow = \frac{1}{2\tau}e^{-\frac{1}{\tau}\left(x-x_0-\frac{\sigma^2}{2\tau}\right)}\left(1+erf\left(\frac{x-x_0-\frac{\sigma^2}{2\tau}}{\sqrt{2}\sigma}\right)\right) \quad \text{e Identified waveform pulses with 1PE } 2\sigma < \text{height} < 1PE + 2\sigma \\ \text{e Fit average pulse shape with convolution functions}}$

Characterization of PDUs: Gain & SNR Stabilities

- Quadrants supplied with 7 VoV average
- Gain plotted for each of the four quadrants
- Stability over a period of about 10 days
- Discrepancies in the SNR of the order of the 2% (peak to peak) for the same quadrant

Characterization of PDUs: SPE Resolution Stability

- SPE resolution = sigma/mean of the fitted 1 PE peak in ROI height
- Behaviors of the different quadrants and ratios

Characterization of PDUs: DCR Evaluation

- Dark Count Rates estimated through 2 different methods: pretrigger in the laser runs and dedicated runs with random trigger
- DCR = #pulses/(#total entries*time window)

- All runs taken with lab lights off, over the weekend/in evenings so no people in the lab
- DCR calculated from both laser and periodic data with an average rate of ~1.2 kHz per quadrant 0.12 Hz/mm²

Characterization of PDUs: Temperature Monitoring

- Temperature monitored throughout the MB4/4 data taking
- Liquid nitrogen (re)filling clearly visible
- No significant effects found with the LN level and refilling

Conclusions

- A dedicated Photosensor Test Facility PTF for testing large area and number of photodevices has been assembled, commissioned and ready for tests since Summer 2021
- Testing campaigns of individual PDUs since Fall 2021 has been carried out
- Upgrade of the Facility performed in July 2022 with LN Fill and Drain in full "Auto-mode" new transfer lines (liquid and cold gas) double wall vacuum insulated, cold gas from all systems collected and warmed up before venting
- New holding structure for hosting 12 PDUs is ready for production
- Improvement of light distribution with optical feedthroughs able to (quite) uniformly cover the whole of the PDUs
- Tests in May-June 2022 have been performed with the aim of characterizing PDUs MB4/4 in terms of the main paramters (BD voltage, Gain, SNR, DCR, Stabilities, etc.)
- Test of PDUs from preproduction phase of NOA starting from Fall/Winter 2022
- Versatile system able to host other type photosensors (large area PMTs, ARAPUCAs, MegaCells, etc.) to be characterized and used in low temperature environment

Extra Slides

Characterization of PDUs: Test Protocol

- Aperture of the case and visual inspection of the PDUs
- Mounting of the PDUs on the NTF holding structure and cabling
- Connections check and verification of the SM communication (tile by tile)
- Warm IV curves
- Closure of the cryostat and filling with liquid nitrogen
- New measurement of the IV curves at LN temperature
- Laser runs: at 6-7-8-9 of VoV for one selected laser intensity
- Check the stability setting (~10 min 200 Hz frequency) and periodic (1/ hrs) runs up to 72 hrs
- Main parameters to be stored in DB: BD voltage, PE positions, S/N ratio, Gain, etc
- Define a PDU passport with all accetable parameters
- Test duration of the order of ~1 week

Characterization of PDUs: DCR Evaluation

Laser Runs

- Acquisition window of 16 µs, with a laser trigger at 8 µs (100k events acquired)
- Plot height of pulses found throughout entire waveform (not only in ROI around laser) and fit 1 PE peak
- Using 200 800 samples (4.8 µs) in the pretrigger region
- Pulses over 0.7*1 PE peak mean height counted

DCR = #pulses/(#total entries * time window)

Periodic trigger

- Acquisition window of 1 ms with 10 Hz frequency and no laser (20k events acquired)
- Plot height of pulses found throughout entire waveform and fit 1 PE peak
- Using 500 124900 samples (0.9952 ms)
- Pulses over 0.7*1 PE peak mean height counted

Test of Photosensors: Logistics

- Three Peli super-v 7 U case for 10+10 PDU to transport modules between NOA and PTF
- Service is needed for PDUs periodic deliveries
- Peli boxes can be also used as the temporary storage in Naples clean room
- PTF holding structure to be fully compatible with the transportation plates
- PDU plate removed from the case and directly inserted into the PTF holding structure

