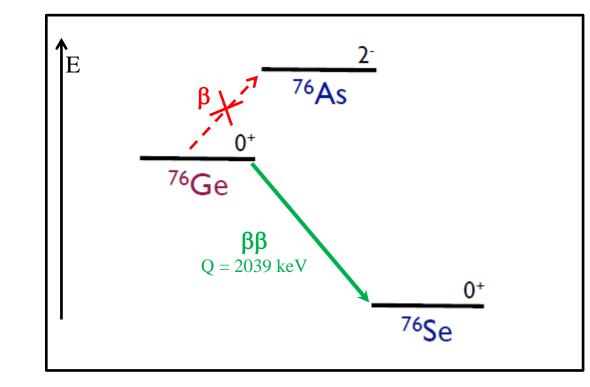
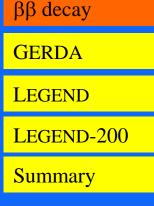


Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Present status of the LEGEND experiment

Grzegorz Zuzel on behalf of the LEGEND Collaboration


Outline


- Double beta decay
- GERDA technology
- LEGEND overview
- LEGEND-200
- Summary

Double Beta Decay

In a number of even-even nuclei, β decay due to energy/angular momentum balance is forbidden, while double beta decay from a nucleus (A,Z) to (A, Z+2) is energetically allowed.

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr ¹⁰⁰Mo, ¹¹⁶Cd ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

GERDA technology

He Co Co

ββ decay

GERDA

LEGEND

LEGEND-200

Summary

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

- GERDA (<u>GER</u>manium <u>D</u>etector <u>A</u>rray) has been designed to investigate neutrinoless double beta decay of ⁷⁶Ge ($Q_{\beta\beta} = 2039 \text{ keV}$) - Ge mono-crystals are very pure
 - Ge detectors have excellent energy resolution
 - Detector = source ($\epsilon \approx 1$)
 - Enrichment required (7.4 % \rightarrow 88 92 %)
 - Bare HP ^{enr}Ge detectors immersed in LAr
- Background (index) around Q_{ββ}: 10⁻² – 10⁻³ cts/(keV×kg×yr); 10 – 100 times lower compared to previous experiments (HdM/IGEX)

GERDA technology

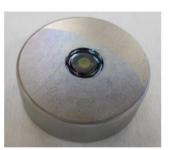
(POC (P) (P)

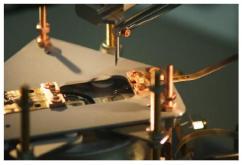
ββ decay

GERDA

LEGEND

LEGEND-200

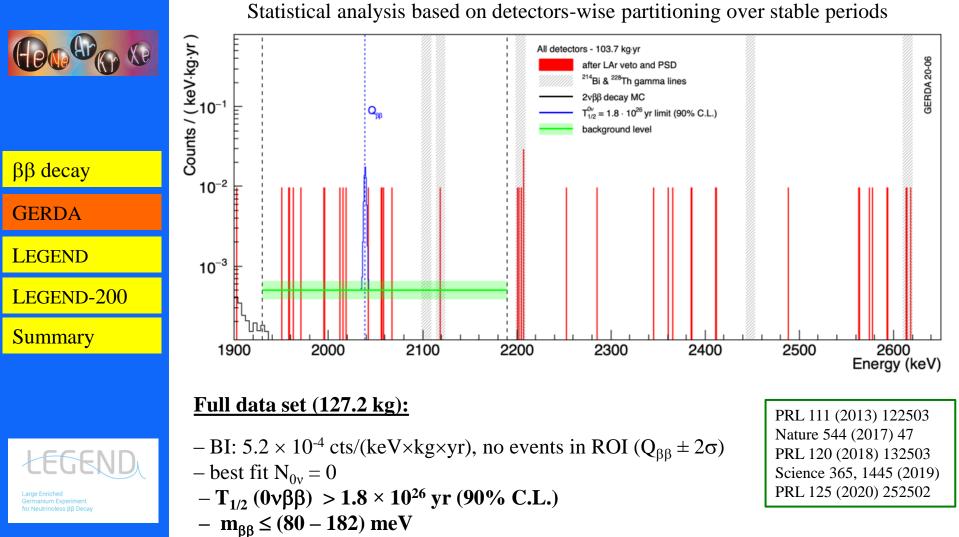

Summary


Large Enriched Germanium Experiment for Neutrinoless ββ Decay

New low-mass detector holders (Si, Cu, PTFE)

New thick-window BEGe detectors

New signal and HV contacting by wire bonding flat ribbon cables



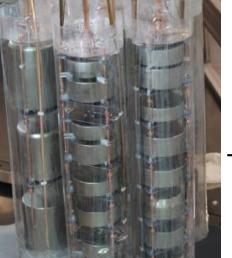
New TPB coated nylon minishrouds to reduce attraction of ⁴²K ions (from decays of ⁴²Ar) to n⁺ surface

TBP = tetraphenyl butadiene

30 enriched BEGe (20.0 kg), 7 enriched coax (15.8 kg), 3 natural coax (7.6 kg) replaced later by 5 enriched IC detectors

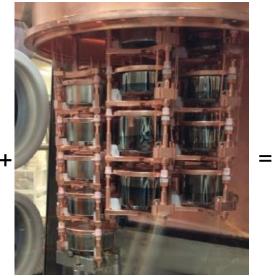
GERDA final result

- median sensitivity for limit setting: $T_{1/2} (0\nu\beta\beta) = 1.8 \times 10^{26}$ yr at 90% C.L.

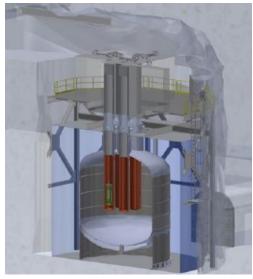

LEGEND concept

• The goal of the LEGEND Collaboration is to design, construct, and field LEGEND-1000, a ton-scale experiment:

"The collaboration aims to develop a phased, ⁷⁶Ge based double-beta decay experimental program with discovery potential at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results".


• The LEGEND collaboration was formed in 2016 by a merger of the Majorana and GERDA collaborations, along with several new institutions (presently 266 members from 48 institutions and 11 countries)

GERDA: best background, LAr shield/veto


PRL 125 (2020) 252502

Majorana: low noise, best FWHM, high purity VFE, low threshold

Phys. Rev. C 100 (2019) 025501

LEGEND-1000

pCDR: arXiv:2107.11462

LIDINE 2022: LIght Detection In Noble Elements, 21-23.09.2022, Warsaw, Poland

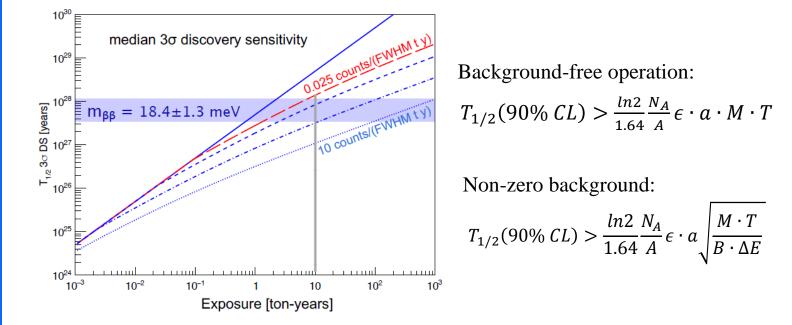
ββ decay

GERDA

LEGEND

LEGEND-200

Summary


Large Enriched Germanium Experiment for Neutrinoless ββ Decay

LEGEND overview

 $T_{1/2} (0v\beta\beta) \sim 10^{28} \text{ yr} \rightarrow \text{less than one decay per year per ton of material}$

- 10 t×yr of data is needed to get a few counts (1 t, 10 yr of data taking)
- very good signal-to-background ratio to get statistical significance
 - \rightarrow extremely low background (~20 times lower compared to GERDA)
 - \rightarrow best possible energy resolution (~2.5 keV at Q_{$\beta\beta$})

Our background goal is the red line on the plot, 0.025 counts/(FWHM×t×yr), "quasi-background-free" operation: ≤ 1 background event expected in a 4 σ ROI for 10 t×yr exposure

LIDINE 2022: LIght Detection In Noble Elements, 21-23.09.2022, Warsaw, Poland

ββ decay

GERDA

LEGEND

LEGEND-200

Summary

Large Enriched Germanium Experiment for Neutrinoless BB Decay

LEGEND overview

1000 kg of enriched Ge detectors (92% ⁷⁶Ge)

ββ decay

GERDA

LEGEND

LEGEND-200

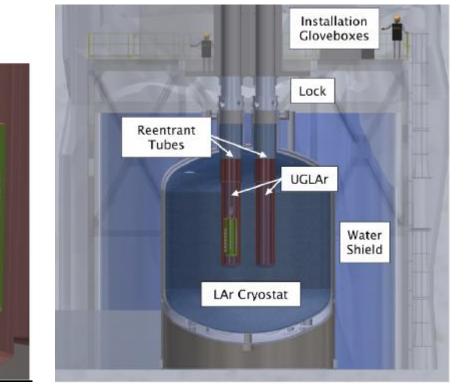
Summary

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

• HPGe detectors: 2.6 kg average mass

• Mounted in "strings" using components made from electro-formed Cu and scintillating plastic, PEN

Ge


Strings

WLS Fiber Curtain

• Strings organized in 4 arrays

HP^{enr}Ge detectors

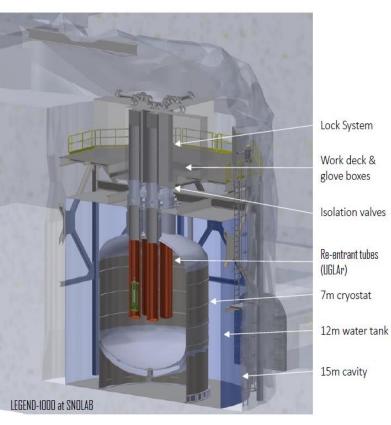
- Underground-sourced LAr active shield
- Dual fiber-curtain LAr instrumentation
- 4 EFCu Reentrant tubes

LEGEND overview

ββ decay

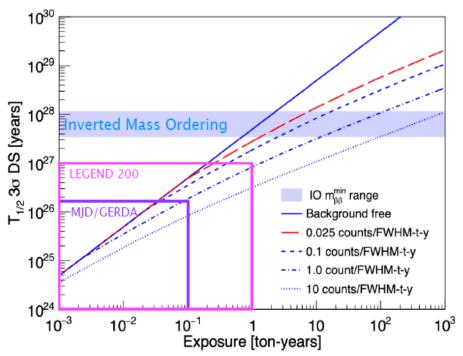
GERDA

LEGEND


LEGEND-200

Summary

Large Enriched Germanium Experiment for Neutrinoless ββ Decay A deep-underground site is needed to shield the experiment from backgrounds generated by cosmic rays


- Baseline site: The SNOLAB "Cryopit"
 ~2 km underground (6000 m.w.e)
 - In an active nickel mine in Sudbury
 - Vertical access through mine shaft
- Aalternative site: LNGS (Italy)
 3500 m.w.e
 - Lower overburden somewhat increases background (can be tagged and reduced)
 Horizontal access reduces cost/schedule
 - risk
- Staff at both sites are actively involved in planning

We are currently assuming that we need to carry both sites forward through CD-1

LEGEND-200

- 200 kg of HP^{enr}Ge in existing GERDA infrastructure at LNGS, Italy
- Anticipated exposure: 1 t×yr
- Expected 2.5 keV FWHM resolution
 - Background goal: 3×reduction w.r.t GERDA, BI < 2×10^{-4} cts/(keV×kg×yr) ~ 0.6 cts/(FWHM×t×keV): quasi-background free operation for unambiguous discovery of 0v $\beta\beta$ decay up to 10^{27} yr
 - Improved VFE electronics
 - Improved PSD methods
 - Improved LAr veto
- Anticipated data taking start in 2022

LIDINE 2022: LIght Detection In Noble Elements, 21-23.09.2022, Warsaw, Poland

ββ decay

GERDA

LEGEND

LEGEND-200

Summary

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

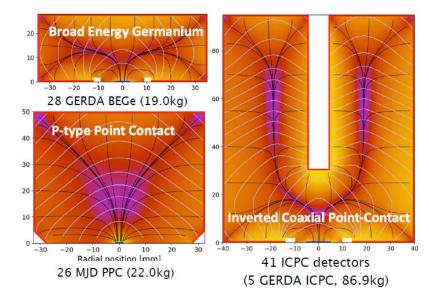
LEGEND-200 detectors

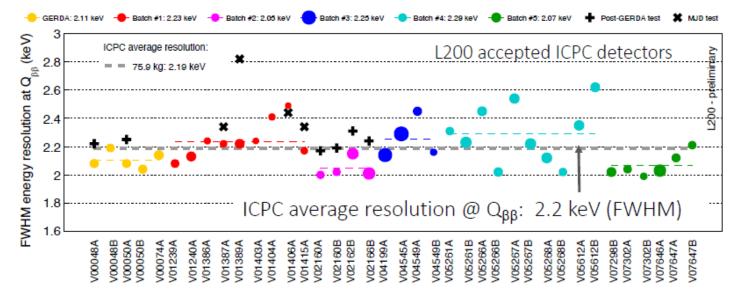
ββ decay

GERDA

LEGEND

LEGEND-200


Summary



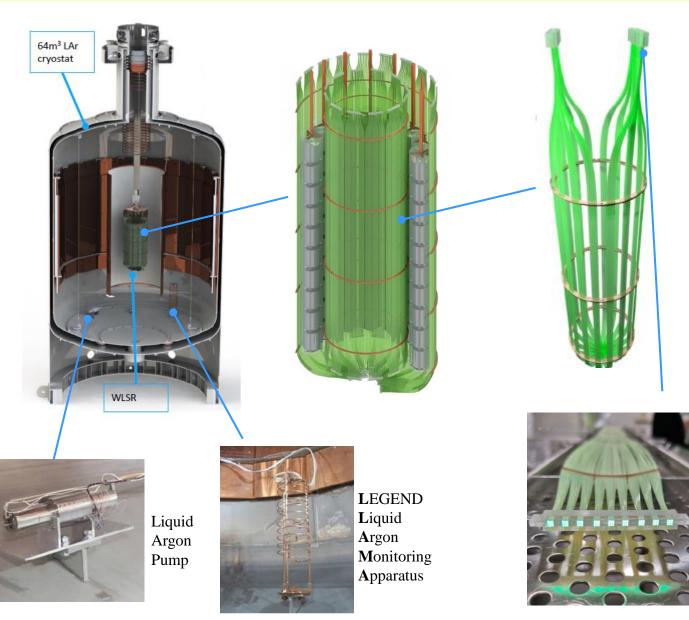
Large Enriched Germanium Experiment for Neutrinoless ββ Decay

- Small p+ contact: event topology discrimination (PSD)
- Large-mass ICPC detectors (60 % of total detector inventory): about 4× lower backgrounds with respect to BEGe/PPC
- Proven long-term stable operation in liquid argon

LEGEND-200 LAr veto

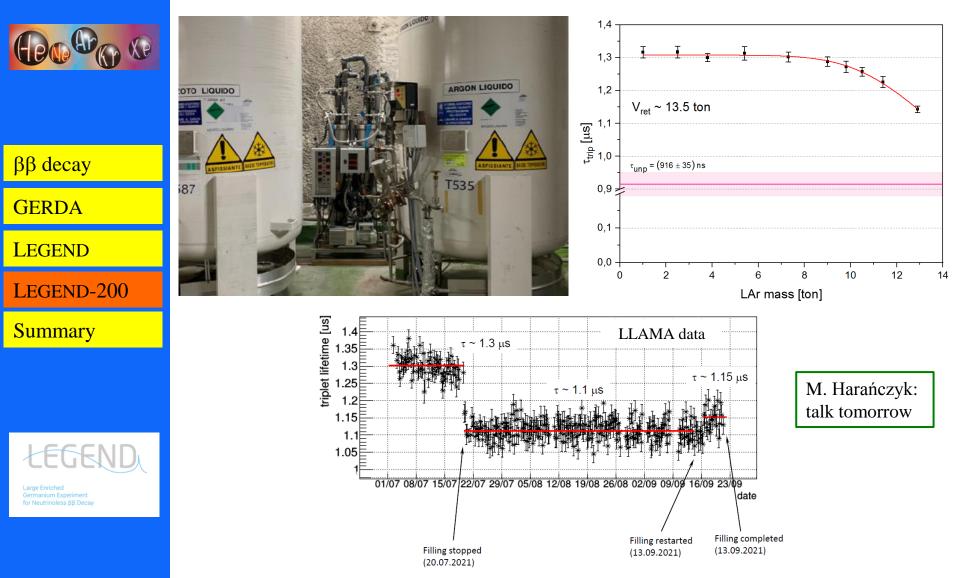
ββ decay

GERDA

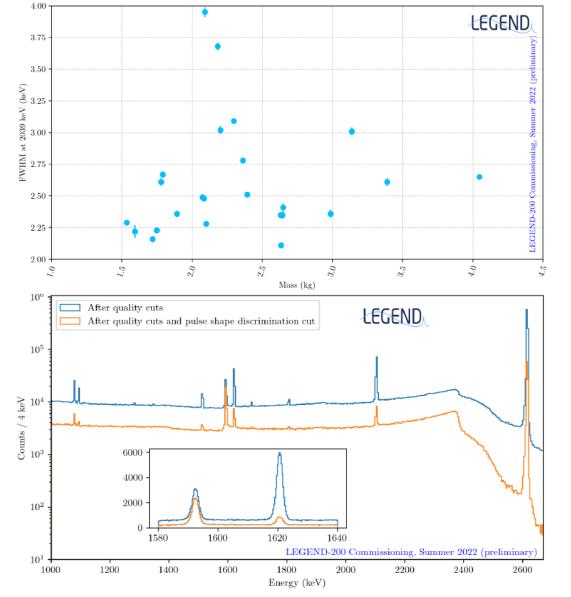

LEGEND

LEGEND-200

Summary

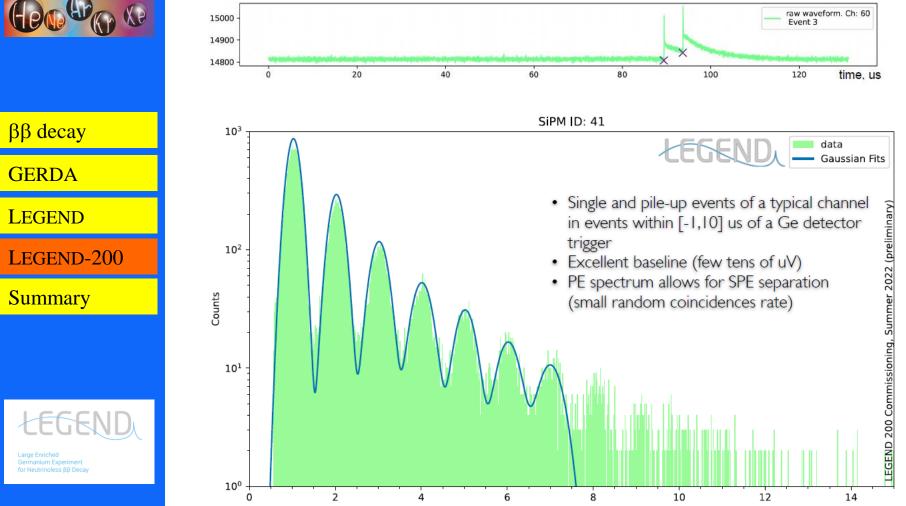


Large Enriched Germanium Experiment for Neutrinoless ββ Decay


LEGEND-200 LAr veto

LAr purification during cryostat filling

LEGEND-200 commissioning


60 kg of ^{enr}Ge in full LEGEND set-up. Preliminary data from August commissioning runs

- Calibration performed with a 5 kBq ²²⁸Th source
- Resolution does not depend on detector mass
- Optimization of data acquisition conditions ongoing

LIDINE 2022: LIght Detection In Noble Elements, 21-23.09.2022, Warsaw, Poland

LEGEND-200 commissioning

Number of Photoelectrons

Summary

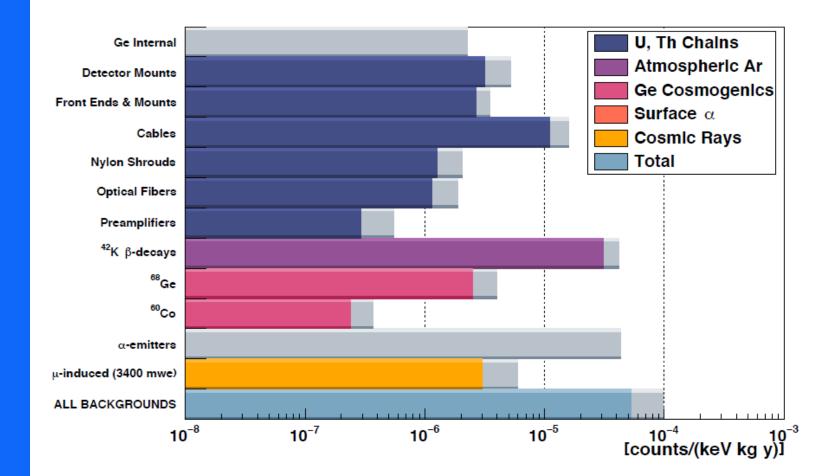
- GERDA: first background-free $0\nu\beta\beta$ decay experiment
- LEGEND next generation experiment for $T_{1/2}^{0v} \sim 10^{28}$ yr and exploration of the inverted neutrino mass hierarchy
 - 13 16 July 2021: DOE-NP Portfolio Review of three experiments: LEGEND-1000, nEXO, CUPID,
 - LEGEND performed exceedingly well and emerged as the leader,
 - LEGEND-1000 is now being supported by DOE-NP to proceed to the next step, "CD-1",
 - Location still to be defined (SNOLAB lab or LNGS),
 - Construction should start in 2024, Pre-Conceptual Design Report available: arXiv:2017.11462,
- First phase, LEGEND-200 aims for $T_{1/2}^{0v} \sim 10^{27}$ yr with 200 kg of ^{enr}Ge
- LEGEND-200 at LNGS (GERDA technology) is presently under commissioning:
 - cryostat filled with purified LAr
 - 60 kg of HP^{enr}Ge deployed
 - LAr veto operational
- LEGEND-200 data taking to start still in 2022

ββ decay

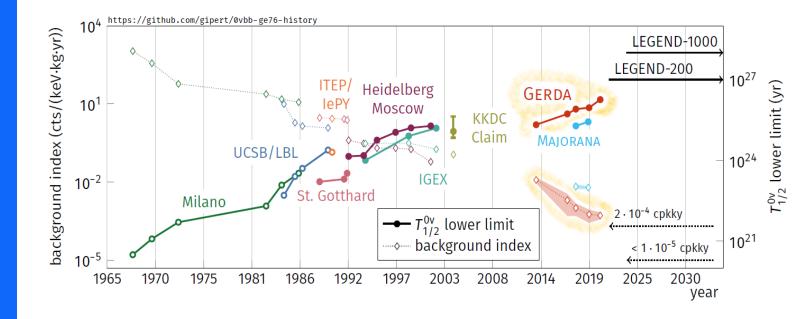
GERDA

LEGEND

LEGEND-200


Summary

Large Enriched Germanium Experiment for Neutrinoless ßß Decay


Backup

LEGEND-200 background budget

Backup

50 years of $0\nu\beta\beta$ decay searches with ⁷⁶Ge

- Impressive technological progress and scientific production
- A new exciting era begins now with **LEGEND**

Backup

Experiments searching for the $0\nu\beta\beta$ decay

								3σ Discovery		Sensitivity	
Experiment	Iso.	Iso. mass [kg]	Run Time [yr]	${f FWHM} [{ m keV}]$	BI [FWHM]]	${ m BI}$ [keV]	Eff.	$\begin{array}{c}T_{1/2}^{0\nu}\\ [10^{27} \ \mathrm{yr}]\end{array}$	$\langle m_{\beta\beta} \rangle$ [meV]	$\begin{array}{c}T_{1/2}^{0\nu}\\ [10^{27}~{\rm yr}]\end{array}$	$\langle m_{\beta\beta} \rangle$ [meV]
LEGEND-200	$^{76}\mathrm{Ge}$	180	5	2.5	0.6	0.2	0.69	0.9	35 - 73	1.4	29 - 60
LEGEND-1000	$^{76}\mathrm{Ge}$	910	10	2.5		0.01	0.70	12.	10 - 20	14	9 - 19
CUPID	^{100}Mo	253	10	5		0.1	0.71	1.1	12 - 20	1.5	10 - 17
AMoRE-II	^{100}Mo	200	5	5		0.1	0.91			1.1	12 - 20
SNO+ Ph. I	$^{130}\mathrm{Te}$	442	5	190		0.1				0.2	41 - 99
SNO+ Ph. II	$^{130}\mathrm{Te}$									1	
KamLAND-Zen 800	$^{136}\mathrm{Xe}$	745	5	235						0.5	
KamLAND2-Zen	$^{136}\mathrm{Xe}$	1000									
nEXO	$^{136}\mathrm{Xe}$	4038	10	58	0.14		0.74	5.7	7.3 - 22.3	9.2	5.7 - 17.7
PandaX-III 200	$^{136}\mathrm{Xe}$	180	3	74		0.1	0.35			0.1	65 - 165
PandaX-III 1000	$^{136}\mathrm{Xe}$	900	3	74		0.01	0.35			1	20 - 50
LUX-ZEPLIN natural	¹³⁶ Xe	500	2.7	58						0.11	53 - 164
LUX-ZEPLIN enriched	¹³⁶ Xe	5040	2.7	58						1.06	17 - 52
DARWIN	$^{136}\mathrm{Xe}$	311	2.8	58		0				8.5	