Coherent CAPTAIN-MILS 10 ton liquid Argon scintillation detector at Los Alamos National Lab

Light Detection In Noble Elements Conference 23 September 2022

Darcy Newmark on behalf of the CCM Collaboration

dnewmark@mit.edu

Outline

- 1. The Detector
- 2. Physics Program
- 3. Future Upgrades

The Detector

Experimental Facilities Los Alamos Neutron Science Center (LANSCE)

- 800 MeV proton beam bunched in the proton storage ring (PSR) with 100 μ Amp current, 290 nsec beam spill, and pulsed at 20 Hz
- Protons incident on tungsten target in Lujan Center, pion decay at rest creates prompt flux of 30 MeV ν_{μ} and delayed flux of $\overline{\nu_{\mu}}$ and ν_{e}

The Detector

Lujan Facility Capabilities

- Lujan Facility upgrades focusing on background rejection, lower power can be compensated with larger detector
- 10 year upgrade to increase background rejection by an order of magnitude through shortening beam spill window from 120 ns to 30 ns

The Detector

Lujan Facility

- Detector positioned 90° off axis from the proton beam and 23m from tungsten target
- ~2.5m diameter and ~2m tall cylindrical cryostat contains 200 8" photomultiplier tubes (PMT) for **5 ton fiducial LAr volume**
- 5 ton optically isolated active veto region surrounding fiducial volume with 40 1" veto **PMTs**
- The Lujan facility will receive $2.25 \cdot 10^{22}$ POT in the upcoming 3 year run cycle, producing flux of $5.28 \cdot 10^5 \,\nu \,/\text{cm}^2/\text{s}$

The Detector

Timeline

CCM120 Engineering Run

- Prototype detector
- Testing 120 PMTs for SBND
- Produced physics results

CCM200 Engineering Run Upgraded detector to 200 8" PMTs • Doubled veto PMT coverage Increased forward shielding

The Detector

Run starts in the next two weeks!

- **CCM200 Physics Run**
- Improved DAQ to handle more calibration streams
- Installed additional top-shielding
- New filtration system

CCM120 physics 2022 results published here and here!

CCM200 Detector

- Electronics have **2ns** sampling time
- Energy detection range from ~10 keV to ~200 MeV
- 80% of PMTs coated in 1,1,4,4 Tetraphenyl-1,3-butadiene (TPB) to
 wavelength shift LAr scintillation light
- TPB foils on walls of the detector (efforts led by Andrzej Szelc's group)

The Detector

ht orts

Light Collection

- TBP foils shift 128nm LAr scintillation light to the visible spectrum, allows better absorption by PMTs
- Combination of uncoated and coated PMTs allow for unique capabilities simultaneous scintillation and Cherenkov light detection
- Can isolate Cherenkov light in **uncoated PMTs**

The Detector

D. A. Newmark

9

Cherenkov Light Detection

- Analysis underway to identify Cherenkov light on event by event basis
- Triggering on cosmic muon events using 5cm X 5cm external detectors that consist of two parallel scintillator panels and SiPM
- Using timing, direction, and uncoated PMTs to focus our search for Cherenkov light
- Provides Michel electron sample for energy calibration up to 50 MeV

The Detector

Pros of CCM Design

- Short beam duty factor, ~10⁻⁶
- Fast timing (2ns sampling)
- Dynamic energy range from nuclear recoil events at 10 keV to electromagnetic events around 100s MeV
- No electric field doubles photons detected compared to TPC
- High photocathode density allows for energy resolution ~20% and detection of Cherenkov light
- Integrated 5 ton veto region
- Purity requirements not as stringent for TPC

The Detector

D. A. Newmark

| 11

Physics Program

Physics Program Overview

- 1. Search for light dark matter through coherent scattering off of Argon
 - Includes dark photon, leptophilic, and hadrophilic mediators
- 2. Search for longer lived dark particles
 - Axion like particles and heavy neutral leptons, dark sector coupling to meson decay as explanation for MiniBooNE excess
- 3. Precise measurements of neutrino-Argon cross sections $\mathcal{O}(10 \text{ MeV})$
 - Capabilities for charged current section measurements (applicable to constraining DUNE supernovae measurements) and detection of CEvNS

Physics Program

Light Dark Matter Search

- Left plot shows leptophobic dark matter limits set from CCM120 engineering run, published here
 - Considering π^0 decays to final state γ and χ in the tungsten target, detection through coherent scattering off of argon nucleus
- Right plot shows predicted vector portal dark matter sensitivities of CCM200
 - Will begin to test the relic density limit below 50 MeV

Physics Program

Axion Like Particle Search

- Considering ALP production through intense e^{\pm} , γ flux produced in the tungsten target and detection via EM final state particles
- ALP search, motivated by QCD axion, can probe "cosmological triangle"
- See <u>https://arxiv.org/abs/</u> 2112.09979 for further details

Physics Program

Heavy Neutral Lepton Search

 CCM200 3 year run sensitivity to HNL production from neutrino upscattering in shielding and detector materials only

 Lujan facility is spacious enough to allow for increased shielding in future runs

Physics Program

Dark Sector Coupling to Meson Decay

- CCM sensitivity to probe dark sector particles coupling to meson decay as a proposed explanation of MiniBooNE Low Energy Excess
- Considering 3 body meson decay producing scalar (or pseudo-scalar) particles
- Detecting nuclear recoil off Argon atoms or EM final state signatures
- CCM200 3 year run cycle is predicted to probe 2σ region of MiniBooNE fit

Physics Program

Cross Sections

- CCM200 has sensitivity to charge current (CC) neutrino interaction on Argon nucleus cross section
- CC measurements are useful to constrain future supernovae neutrino measurements in DUNE and other LAr detectors
- Exploring CEvNS measurements using nuclear recoil signatures

Physics Program

Future Upgrades

Looking Forward

- CCM200 is funded for a 3 year run cycle and will probe many new models/ parameter space in the dark sector
- to Lujan proton source to reduce backgrounds by an order of magnitude
- complement the SNS upgrades and Fermilab's Proton Improvement Plan -II

Future Upgrades

Next generation CCM1000 detector is being considered to utilize future upgrades

CCM1000 or other simultaneous scintillation and Cherenkov light detectors would

• With implementation of a PSR at PIP-II, intense high-energy beam of neutrinos would be suitable for above ground detectors like CCM

Thank you for listening!

LABORATORY DIRECTED **RESEARCH & DEVELOPMENT**

Massachusetts Institute of Technology

UF

UNIVERSITY of **FLORIDA**

D. A. Newmark

21

Backup

Cherenkov Spectrum

Benefits of Detecting Cherenkov Light

- Our primary background source are neutrons produced in the target so Cherenkov light identification enhances our background rejection
- Particle identification
- Directional information of interaction in detector

Timing Cuts

- 190nsec timing cut to remove neutron wall
- Primary neutron background with $E_n \approx 20-50$ MeV reduced by timing cut (see arXiv:2105.14020 for discussion of timing cuts)
- Fast neutrons absorbed by shielding

Backup

Backup

Dark Sector Coupling to Meson Decay

