Update on **Delayed Electron Emission** in DarkSide-50

European Union

Masayuki Wada AstroCeNT on behalf of the DarkSide-50 collaboration Sep. 21 2022 **LIDINE 2022**

DS-50 Liquid Argon TPC

- Double-phase liquid argon TPC (see Physics Letters B 743, 456 (2015)).
- Readout S1 and S2 light signals with PMTs.
- Trigger on two PMTs coincidence (0.6 PE) within 100 ns.
- Drift field is 200 V/cm.
- Electroluminescence field is ~5.6 kV/cm (at the x-y center) and 4.2 kV/cm (at the edge).
- Cathode and anode consist of ITO coated on fused silica instead of wires unlike in the Xenon TPC.
- The hexagonal meshed grid at 5 mm below the liquid surface to apply the extraction field of 2.8-3.7 kV/cm (due to deformation) of anode).
- Argon is purified in gas phase by a hot getter and a Rn trap, then directly brought back in the TPC from a condenser.

DM

Low Energy Backgrounds in DS-50

- The analysis threshold was determined by the excessive number of events at 1-4 Ne.~
- Limits our sensitivity to lower WIMP mass range.
- Need to understand the few-electrons events, so called, spurious electrons (SE) events

β/γ backgrounds

Time Evolution of events in DS-50

- Time evolution of each category from the underground Ar filling date (2015/04/01)
- Except SE and No Pulse, the rates are relatively flat. Stable operation over years!!
- In SE and No Pulse, two slopes: until 200 days and rest.
- Getter-off runs are from 99 to108 days.

Pulse identification by pulse shape and pulse size

Event categorization based on the pulse id's and their temporal order

- *Multi scatter*: gamma events, random pileups
- *Single scatter*: normal events (S1+S2)
- S1 only: events don't have S2 or S2 too small (Cherenkov, wall effect, events in holes)
- No pulse: triggered, but pulse finder cannot find pulse including low Ne events that happen at the edge of the TPC.
- S2 only: events don't have S1, or S1 too small for pulse finder (only Ne≥4)
- *Multi* S2: multi scatters with S1 and the first S2 pileup (due to low t_drift)
- SE: one S2-like pulse with Ne<4

Focus of this talk!

• Other: all the rest, 10⁻³ Hz (<0.1% of all events), for example, event with S2 + S1 + ...

Getter Off runs

- The increase in rates were seen only in SE and No Pulse. -> Not affect above Ne>4.
- The decrease rate of the extra events had a time constant of 36 hours
- The rate increased in 2 days and stable until the getter was included.
- ullettoo small to be found by the pulse finder, ie. No Pulse).

- For maintenance, the hot getter in the argon gas circulation system was bypassed for about 5 days (120 hours).
- An increase in rates of onepulse events with a short livetime and small signal size.
- The elevated event rate was back to normal in 4 days after reinstallation of the getter.

This suggests that impurities introduced by the absence of the getter are responsible for SE events (and SE events)

Time correlation of SE with large-energy events **Time evolution of the time correlation**

- large-energy events (parent events): S1>1000PE, t_drift defined (at least two pulses), and x-y position reconstructed.
- Register trigger time of events for large events and SE separately.
 - correlated ΔT : for each identified SE, fill time difference from all preceding large events within 10s from the SE.
 - random ΔT : for each identified large event, fill time difference from all preceding SE events within 10s from the large event.
- Random ΔT helpings modeling the uncorrelated fraction that is present in the correlated ΔT

Time correlation

 At least two exponentials are necessary. Not power law unlike in Xenon based TPC.

D.S. Akerib et al. Phys. Rev. D 102, 092004 (2020)

In getter off data, an additional time constant τ_3 of 18 ms appeared and three exponentials are used.

High statistics analysis of data belonging to a 500 d time period reveals other components beyond the simple two exponential model.

Time Evolution of Time Correlation

Getter off data is not included

- R₁ plus R₂ represent the correlated rates in SE events.
- We can explain 40% to 70% of the SE rate being correlated with well identified preceding events.

Electron drift-lifetime

- The improvement trend of the electron drift-lifetime is similar to the trend of the longer time correlation.
- The getter off runs did not show degradation of electron lifetime.
- The impurity causing 18 ms time constant (τ_3) in the \circ^{\sim} getter off is different from the impurity causing electron lifetime degradation.

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

0.1

Correlation with Parent's S2 and z-position

- For all parent events, count how many SE events follow until next parent event.
- The fraction of parent events with no SE events, one SE event, two SE events, so on, is calculated as a function of parent S2.
- Large energy events create more SE events.
- Only single-scatter parent events to have a well-defined z-position.
- Clear linear relationship with z-position of parent. -> The longer the drift time, the higher the chance of electrons to be captured.
- Consistent with the correlated-events hypothesis, which originates from the charge released in previous interactions drifting along the field and being trapped along the route.

x-y correlation

- Strong correlations are observed between S2_Max_chan of SE and its parent events.
- The correlation with other channels is basically 0, no correlation. Pearson's correlation coefficient is used.
- Temporary correlated pairs shows strong spatial correlation as well.

The first 120 days including Getter-Off runs

preliminary

	0 .00	-0.01	-0.00	0.00	0.00	-0.01	-0.02	-0.01	-0.00	0.00	-0.01	-0.02	-0.01	-0.00	-0.00	0.02	0.00	0.02	0.19
36	-0.0 0	-0.02	-0.01	-0.01	-0.01	-0.03	-0.03	-0.03	-0.01	0.01	-0.01	-0.04	-0.03	-0.01	-0.00	-0.01	-0.00	0.43	0.01
	-0.02	-0.04	-0.02	-0.04	-0.02	-0.08	-0.08	-0.08	-0.03	-0.01	-0.05	-0.08	-0.07	-0.04	-0.02	-0.02	0.63	-0.01	-0.00
34	0.0 1	-0.02	-0.01	-0.02	-0.01	-0.04	-0.04	-0.04	-0.01	-0.01	-0.03	-0.05	-0.01	-0.02	0.01	0.50	-0.01	-0.01	0.00
	-0.00	-0.01	-0.00	-0.00	-0.00	-0.02	-0.02	-0.02	-0.01	-0.00	-0.02	-0.03	0.01	0.02	0.28	0.02	-0.02	-0.00	0.00
32	-0.0 0	-0.02	-0.01	-0.01	0.01	-0.01	-0.03	-0.04	-0.02	-0.00	-0.04	-0.05	-0.01	0.47	0.02	-0.01	-0.04	-0.01	-0.00
	 0.02	-0.04	-0.02	-0.04	-0.02	-0.07	-0.09	-0.09	-0.04	-0.02	-0.08	-0.09	0.64	-0.02	-0.00	-0.02	-0.07	-0.03	-0.01
30	-0.0 3	-0.06	-0.03	-0.06	-0.03	-0.09	-0.09	-0.09	-0.05	-0.02	-0.08	0.65	-0.09	-0.05	-0.02	-0.05	-0.09	-0.04	-0.02
	-0.02	-0.04	-0.02	-0.04	-0.02	-0.08	-0.08	-0.06	-0.02	-0.00	0.62	-0.08	-0.08	-0.03	-0.02	-0.04	-0.05	-0.01	-0.01
28	0.0 1	-0.00	-0.00	-0.01	0.01	-0.02	-0.02	-0.01	0.01	0.25	0.01	-0.02	-0.02	-0.00	0.01	-0.00	-0.01	0.01	0.01
	0 .01	-0.01	-0.01	-0.02	-0.01	-0.04	-0.04	-0.01	0.48	0.01	-0.01	-0.05	-0.04	-0.02	-0.01	-0.02	-0.04	-0.01	-0.00
26	-0.0 1	-0.03	-0.03	-0.04	-0.02	-0.09	-0.06	0.62	-0.02	-0.02	-0.06	-0.09	-0.09	-0.04	-0.02	-0.04	-0.08	-0.03	-0.01
	 0.02	-0.02	-0.01	-0.03	-0.02	-0.07	0.62	-0.06	-0.04	-0.02	-0.08	-0.08	-0.08	-0.04	-0.02	-0.04	-0.08	-0.03	-0.01
24	0.0 2	-0.04	-0.03	-0.02	-0.01	0.63	-0.06	-0.08	-0.04	-0.01	-0.08	-0.09	-0.07	-0.02	-0.02	-0.04	-0.08	-0.03	-0.01
	0.00 	-0.01	-0.00	0.02	0.32	0.01	-0.02	-0.02	-0.01	-0.00	-0.02	-0.03	-0.02	0.01	0.00	-0.00	-0.02	-0.01	0.00
22	-0.0 1	-0.02	0.01	0.51	0.00	-0.02	-0.01	-0.04	-0.02	-0.01	-0.04	-0.06	-0.04	-0.02	-0.01	-0.02	-0.04	-0.02	-0.01
	 0.01	0.01	0.39	0.01	-0.01	-0.03	0.01	-0.02	-0.01	0.00	-0.02	-0.04	-0.03	-0.01	-0.01	-0.01	-0.03	-0.01	0.00
20	0.0 1	0.50	0.01	-0.02	-0.01	-0.04	-0.02	-0.02	-0.02	-0.01	-0.04	-0.06	-0.05	-0.02	-0.00	-0.02	-0.04	-0.01	0.00
	0.33	0.01	0.00	-0.01	0.00	-0.03	-0.02	0.01	0.02	0.00	-0.02	-0.03	-0.03	-0.01	0.00	-0.01	-0.02	- 0. 00	0.00
		20		22		24		26		28		30		32		34		36	
						P	ar	ont		32	ma	Y	ch	an					

SE rate correlation with total activity in TPC

- Both temporally correlated and uncorrelated SE rates decreased as total activity in TPC decreased.
- It suggests that less radioactive detectors might have lower SE rate in the future experiments.

Correlation? a hint of correlation

- When the temperature of the radon trap decreased, the rate of the slow time constant R₂ (~50 ms) also decreased.
- It might mean the radon trap captured the impurity and reduce the rate of SE w/ the slow time constant.
- Other slow control parameters showed no obvious correlation with the SE rates.

Summary

- mass dark matter search.
- (87K for Ar) and is one of gases removed by the hot getter.
- time, and energy. Temporally correlated SE make up 40-70% of total SE rate.
- In the time correlation study, the time constants change with time in our exposure: the short component ~5 ms stable, the long component evolve from 90 to 45 ms. With getter-off, an additional component is necessary, maybe sign of different type of impurities. With higher statistics, a ~0.5 s component is visible.
- No clear correlation with the impurity causing finite electron drift-lifetime.
- The rate of SE shows a hint of correlation with the temperature of the Rn trap.

• In DS-50 TPC, we observed events with a few electrons emission, which set a threshold for low

• The SE event rates decrease with time constant of 36 hours for the getter off impurity, which is much shorter than the time scale of the electron lifetime improvement (~160 days). This impurity should have lower boiling temperature than Ar, such as N², which has boiling temperature of 77K

• There are strong correlations between parent events and following SE events in event positions,

• Both rates of temporally correlated and uncorrelated SE decrease as the total event rate decrease.

Few electron signals in DS-50

- Photo-ionization (within the acquisition window) see <u>Astropart.Phys.2022.102704</u> for more details.
 - TPB/ITO photo-ionization (@ maximum drift time, 375 µs: S1or S2 echos)
 - Impurity photo-ionization? delayed electrons? (< maximum drift time)
- **Delayed electrons** (> the acquisition window, 440 μ s, independently triggered events) reliminary **Spurious electrons** (focus of this presentation)
 - - Release of trapped electrons at liquid surface
 - Grid emission

Few-electron events are identified in DS-50 by pulse shape and time info relative to other pulse.

- Not seen (or not identified) in DS-50, but reported in Xenon based TPCs

D.S. Akerib et al. Phys. Rev. D 102, 092004 (2020) P. Sorensen and K. Kamdin JINST 13 P02032 (2018) E Aprile et al. J. Phys. G: Nucl. Part. Phys. 41 035201 (2014) Santos, E. et al. J. High Energ. Phys. 2011, 115

