First dark matter search results from the LZ

**LIDINE 2022** 

Warsaw, Poland

Andrew Stevens (UCL/Imperial)

a.stevens@imperial.ac.uk

On behalf of the LZ collaboration

21 September 2022

# LUX ZEPLIN



#### Black Hills State University

- Brandeis University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Wisconsin, Madison
- Andrew Stevens LIDINE 2022



LZ Collaboration Meeting - September 8-11, 2021

Science and Technology Facilities Council



ibs Institute for Basic Science

# LZ detector & Dark Matter

Imperial College London



- Dark Matter Detector particularly sensitive to WIMP candidates
- Dark Matter evidence from rotation curves, bullet cluster, CMB ...
- Nature of such a substance is inferred from observation







TPC



### Principles of detection:

- Interactions produce primary scintillation light (S1) and ionisation electrons
- Secondary scintillation signal (S2) from drifted ionisation charge

Position reconstruction - hit pattern and drift time

• Enables separation of single and multiple scatters

Particle ID from S1/S2 ratio

• Nuclear recoils (signal) and electronic recoils (background)





### Xenon 'Skin'

- Surrounds the TPC volume (~2 tonnes)
- Actively instrumented with 1" and 2" PMTs at the top and bottom active veto.
- Optically isolated from other detectors
- Anti-coincident gamma ray detector



### **Outer Detector**

- Gadolinium liquid scintillator surrounding detector.
- Located within an instrumented water tank (8" PMTs)
- Anti-coincident neutron and gamma detector

Vetos providing ~88% neutron detection efficiency

### Construction





# **Background mitigation**

Imperial College London

- Material selection
  - Material screening for U,Th,K,Co determined material selection.
  - Screening in Ge facilities (Boulby (UK), SURF (US)), ICP-MS, Radon
- Shielding
  - LZ is 4850 ft (~1 mile) underground muon flux reduced by over a million.
  - Water tank and Xe self shielding
- Cleanliness/Rn daughter
  - Parts were cleaned and construction performed in a cleanroom
  - Requirements: Dust <500 ng/cm<sup>2</sup> on all LXe wetted surfaces
  - Rn-daughter plate-out on TPC walls <0.5 mBq/m<sup>2</sup>
- Xenon contaminant removal
  - <sup>85</sup>Kr/<sup>39</sup>Ar Removal
- Purification underground with a warm getter
   Andrew Stevens LIDINE 2022 <u>Eur.Phys.J.C 80 (2020) 11, 1044</u>



## First science run

- Goals:
  - 1. Demonstrate physics capabilities of the detector (not blinded)
  - 2. Perform competitively with other similar experiments
- Key information:
  - 1. Livetime 60 days (Data from 23rd Dec 2021 to 12th May 2022)
  - 2. PMTs: >97% operational throughout run
  - 3. Liquid temperature: 174.1 K (0.02%)
  - 4. Gas pressure: 1.791 bar(a) (0.2%)
  - 5. Gas circulation: 3.3t/day
  - 6. Drift field: 193 V/cm (32 kV cathode, uniform to 4% in fiducial volume)
  - Extraction field: 7.3 kV/cm in gas (8 kV gate-anode ΔV)



Imperial College

London

# Calibrations



- Many sources:
- <sup>83m</sup>Kr: monoenergetic ERs, 32.1 keV and 9.4 keV
   <sup>131m</sup>Xe: monoenergetic ER, 164 keV
- CH<sub>3</sub>T (tritium): beta spectrum Q-value: 18.6 keV
- Deuterium-deuterium (DD): triggered 2.45 MeV
  neutrons
- Activation lines
- AmLi: continuum neutrons, isotropic
- Alphas
- And more (<sup>220</sup>Rn, YBe, <sup>252</sup>Cf, <sup>22</sup>Na, <sup>228</sup>Th, etc)
- Some uses:
  - Tune the position reconstruction algorithm in horizontal plane
  - Flat fielding of S1 and S2 signals
- NEST (<u>https://nest.physics.ucdavis.edu/</u>) model tuned to the response of tritium and validated on DD
   Andrew Stevens - LIDINE 2022



- $\circ\,$  Light gain g1: 0.114 ± 0.002 phd/photon
- $\circ$  Charge gain g2: 47.1 ± 1.1 phd/electron
- Single electron size: 58.5 phd



### Electronic Recoils

Dissolved contaminants (beta decay):

- <sup>214</sup>Pb (<sup>222</sup>Rn daughter)
- <sup>212</sup>Pb (<sup>220</sup>Rn daughter)
- <sup>85</sup>Kr

Dissolved contaminants (electron capture):

- <sup>37</sup>Ar
- <sup>127</sup>Xe
- <sup>124</sup>Xe (double e-capture)

Gamma emitters in detector materials <sup>60</sup>Co, <sup>40</sup>K, <sup>238</sup>U chain, <sup>232</sup>Th chain

Andrew Stevens - LIDINE 2022

### **Nuclear Recoils**

- Neutron emission from spontaneous fission and (α,n)
- <sup>8</sup>B solar neutrinos

Expected numbers of events:

Electronic recoils: 276 + [0, 291] from <sup>37</sup>Ar

Nuclear recoils: 0.15



There is contamination from spurious signals:

- Electron and photon rates are higher after larger S2s
- Isolated S1 and S2 pulses from charge or light insensitive regions
- Gas events
- Solution data quality cuts:
  - Pulse based cuts

Targets accidental pileup topologies Cut mainly on hit pattern and pulse shape Tuned with tritium and AmLi calibration data

• Timing cuts

Removes the high rates of electron and photon emission following S2s



#### Imperial College Vetos and fiducialisation London Vetos considered in anti-coincidence with the TPC: **Events surviving all selections** Skin-prompt-tagged events Prompt OD and Skin cut **OD**-prompt-tagged events Used for vetoing gammas 0 Significantly reducing the L,M<sup>127</sup>Xe background 0 Delayed OD cut 140 Looking for neutron capture on Gd Ο 120 200 ~ 200 keV threshold $\bigcirc$ Drift Time $[\mu s]$ In situ expected rate of <sup>+0.2</sup>0 0 400[cm]Fiducialisation: 600 Inner 5.5 tonnes of Xenon considered for the 800 analysis Optimise fiducial volume and lower S2 threshold 1000 $50^{2}$ $60^{2}$ $70^{2}$ $40^{2}$ $30^{2}$ together Reconstructed $r^2$ [cm<sup>2</sup>]

### Efficiencies



Trigger - all events triggered

S1 threshold - apply S1 three fold coincidence requirement

SS & data analysis cuts single scatter cut and application of cuts previously considered

ROI - Considering events in the energy range shown, cut applied in S1, S2 space



### Result

| Source                                     | Expected Events | Best Fit             |
|--------------------------------------------|-----------------|----------------------|
| $\beta$ decays + Det. ER                   | $218 \pm 36$    | $222 \pm 16$         |
| $\nu  \mathrm{ER}$                         | $27.3 \pm 1.6$  | $27.3 \pm 1.6$       |
| <sup>127</sup> Xe                          | $9.2\pm0.8$     | $9.3\pm0.8$          |
| $^{124}$ Xe                                | $5.0 \pm 1.4$   | $5.2 \pm 1.4$        |
| $^{136}$ Xe                                | $15.2 \pm 2.4$  | $15.3\pm2.4$         |
| $^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$ | $0.15\pm0.01$   | $0.15\pm0.01$        |
| Accidentals                                | $1.2 \pm 0.3$   | $1.2 \pm 0.3$        |
| Subtotal                                   | $276\pm36$      | $281 \pm 16$         |
| $^{37}$ Ar                                 | [0, 291]        | $52.1_{-8.9}^{+9.6}$ |
| Detector neutrons                          | $0.0^{+0.2}$    | $0.0^{+0.2}$         |
| $30 \mathrm{GeV/c^2}$ WIMP                 |                 | $0.0^{+0.6}$         |
| Total                                      | —               | $333 \pm 17$         |

Best fits at all masses are for zero WIMP events





Result



90% CL upper limit on WIMP-nucleon  $\sigma_{sl}$  is 5.9 x 10<sup>-48</sup> cm<sup>2</sup> at 30 GeV/c<sup>2</sup> WIMP mass

- Limit constructed using frequentist profile likelihood ratio (PLR)
- Two sided
- Signal rate constrained to be positive only





Results here are only a small fraction of the total exposure of the experiment  $(\sim 17 \text{ x more exposure})$ 

LZ is multi-physics device:

- Solar axions and axion like particles
- Neutrinoless double beta decay (<sup>136</sup>Xe/<sup>134</sup>Xe)
- Low mass dark matter (S2 only, Migdal)
- Higher mass dark matter (EFT)
- Etc.

## **XLZD** Consortium



### Leading Xenon Researchers unite to build next-generation Dark Matter Detector

SURF is distributing this press release on behalf of the DARWIN and LZ collaborations

#### July 20, 2021

- Consortium formed between LZ, XENON, DARWIN
- Successful XLZD meeting 27-29 June 2022 at Karlsruhe Institute of Technology
- https://xlzd.org/
- <u>White paper (2203.02309)</u>







LZ is now the most sensitive experiment in the world in the considered mass range. See the paper: <u>arXiv:2207.03764</u>

The detector is performing well, and is producing high quality data

Exciting times still lie ahead...



### Spin Dependent results

Imperial College London



Uncertainty band to on nuclear form factor for Xe (\*). "Brazil" band omitted for clarity (\*) <u>P. Klos, J. Menéndez, D. Gazit, and A. Schwenk</u> Phys. Rev. D 88, 083516 (2013)



90% CL minimum (**one sided**) of 1.4 x  $10^{-48}$  cm<sup>2</sup> at 40 GeV/c<sup>2</sup> from <u>Phys. Rev. D 101, 052002 (2020)</u>

**Imperial College** 

London

**UC** 

## Radon

<sup>214</sup>Pb is dominant electronic recoil background (<sup>222</sup>Rn decay chain)

Constrain the rate within the WIMP search:

- 1. Constraining backgrounds in the sideband
- 2. Alpha tagging

Consistent with assay campaign

| lsotope (decay)           | Activity [µBq/kg]                    |  |
|---------------------------|--------------------------------------|--|
| <sup>222</sup> Rn (alpha) | 4.37 ± 0.31 (stat)                   |  |
| <sup>218</sup> Po (alpha) | 4.51 ± 0.32 (stat)                   |  |
| <sup>214</sup> Pb (beta)  | <b>3.26</b> ± 0.13(stat) ± 0.57(sys) |  |
| <sup>214</sup> Po (alpha) | 2.56 ± 0.21 (stat)                   |  |





Imperial College London

<sup>222</sup>Rn not uniformly distributed.

Stratification in LXe flow is a possible tool to reject <sup>214</sup>Pb in future





Rn222 Distribution

Argon



24

<sup>37</sup>Ar decays ( $T_{1/2}$  = 35 d, monoenergetic 2.8 keV ER deposition)

Predominant source of argon in LZ is through cosmogenic spallation LZ Collaboration, Phys. Rev. D 105, 082004 (2022), <u>2201.02858</u>

Activity estimates can be formed showing approximately 100 decays in data (large uncertainty)





# Low energy recoils



- Downward fluctuation in the observed upper limit near 30 GeV/c<sup>2</sup> is a result of the deficit of events under the <sup>37</sup>Ar population.
- 2. Tritium data analyzed identically to WS data; well-covered
  - DD data also shows deficit region is well-covered.



3.

M-shell decays of
<sup>127</sup>Xe populate near
deficit region.
Observed rate of
M-shell decays with
coincident γ-ray
tagged by the skin is
consistent with
expectation, given
signal efficiencies.

Conclusion: Deficit appears consistent with under-fluctuation of background. 25



| Selection description         | Events after selection |
|-------------------------------|------------------------|
| All triggers                  | $1.1 \times 10^{8}$    |
| Analysis time hold-offs       | $6.0 	imes 10^7$       |
| Single scatter                | $1.0 	imes 10^7$       |
| Region-of-interest            | $1.8 	imes 10^5$       |
| Analysis cuts for accidentals | $3.1 	imes 10^4$       |
| Fiducial volume               | 416                    |
| OD and Skin vetoes            | 335                    |

## **Doke Plot - energy calibration**



Imperial College

London

**UCL** 

Z