# DMNet



#### LIDINE 2022 September 22th 2022

### Development of coated electrodes with low quantum efficiency for future direct dark matter experiments with liquid xenon

Naoki Aoyama(Nagoya University)

### **Challenges for Dual-Phase LXe TPC**

- Direct DM experiments based on dual-phase LXe TPC have some problems related to electrodes and they cause some problems:
  - Applying high electric field for ton-scale LXe TPC might be challenging due to disconnection, sagging, discharge and etc (ex: electric field in XENONnT is operated at 23 V/cm).

#### ➡ Mechanically stable electrodes are needed.

- 2. In S2-only analysis, there are lots of instrumental BGs related to electrodes where their BG models are not well understood.
  - Reducing such instrumental BGs is the key for the discovery of low mass DM.

We are trying to solve these problems by coated electrodes with low quantum efficiency (QE).

#### Delayed extraction

Some of electrons are trapped at the liquid surface and their extraction is delayed.

#### - 2 Field emission

High electric field near electrodes can produce electrons.

#### - ③ Photoelectric effect

Photoelectric effect on electrodes and electronegative impurities.

#### ④ Capture and release by impurities Electronegative impurities like O2 in Xe capture and release electrons.

#### **Delayed extraction**

Some of electrons are trapped at the liquid surface and their extraction is delayed.

#### - 2 Field emission

High electric field near electrodes can produce electrons.

#### - ③ Photoelectric effect

Photoelectric effect on electrodes and electronegative impurities.



#### Delayed extraction

Some of electrons are trapped at the liquid surface and their extraction is delayed.

#### - 2 Field emission

High electric field near electrodes can produce electrons.

#### - ③ Photoelectric effect

Photoelectric effect on electrodes and electronegative impurities.

 ④ Capture and release by impurities Electronegative impurities like O2 in Xe capture and release electrons.



#### Delayed extraction

Some of electrons are trapped at the liquid surface and their extraction is delayed.

#### - 2 Field emission

High electric field near electrodes can produce electrons.

#### - 3 Photoelectric effect

Photoelectric effect on electrodes and electronegative impurities.

 ④ Capture and release by impurities Electronegative impurities like O2 in Xe capture and release electrons.



#### Delayed extraction

Some of electrons are trapped at the liquid surface and their extraction is delayed.

#### - ② Field emission

High electric field near electrodes can produce electrons.

#### - ③ Photoelectric effect

Photoelectric effect on electrodes and electronegative impurities.

#### - ④ Capture and release by impurities

Electronegative impurities like O<sub>2</sub> in Xe capture and release electrons.



#### Delayed extraction

Some of electrons are trapped at the liquid surface and their extraction is delayed.

#### - 2 Field emission

High electric field near electrodes can produce electrons.

### 3 Photoelectric effect Photoelectric effect on electrodes and electronegative impurities.

 ④ Capture and release by impurities Electronegative impurities like O2 in Xe capture and release electrons.



## Decay of radioactive impurities on cathode Decay of <sup>222</sup>Rn daughters which plate

out on electrodes.

#### Delayed extraction

Some of electrons are trapped at the liquid surface and their extraction is delayed.

#### - 2 Field emission

High electric field near electrodes can produce electrons.

#### - 3 Photoelectric effect

Photoelectric effect on electrodes and electronegative impurities.

 ④ Capture and release by impurities Electronegative impurities like O2 in Xe capture and release electrons.





- No disconnection and less sagging :
  - Mechanically stable because it is coated on quartz glass.
- Less S2 only BGs :
  - Low QE material can reduce electrons produced by photoelectric effect.
  - Additional layer of insulator may reduce the electrons from the metal surface by field emission.
  - Because of less sagging, it might be also possible to apply high-extraction field, which may reduce trapped electrons (delayed extraction).

### **Toward LXe TPC with Coated Electrodes**

#### **Development of coated electrodes with low QE**

- Find a good material with low QE.
- Optimize coating pattern and coating method



 Optimize coating area such that total transparency reaches ~ 90%.

Build a dedicated LXe TPC with the selected electrode and characterize its performance.

#### Prototype of LXe TPC



Quartz Plate We will coat electrodes on them.

### **Toward LXe TPC with Coated Electrodes**

#### **Development of coated electrodes with low QE**

- Find a good material with low QE.
- Optimize coating pattern and coating method



- Optimize coating area such that total transparency reaches ~ 90%.
- Build a dedicated LXe TPC with the selected electrode and characterize its performance.

#### Prototype of LXe TPC



Quartz Plate We will coat electrodes on them.

#### **Measured Samples**

Stainless steel : Used in XENONnT and LZ Measured as a reference.

- Au / Pt : Metals with high work function
- AI + MgF2 : Metal-surface coated with insulator



### **Measurement Setup**

#### Measurement system in vacuum, GXe and LXe.



### **Measurement Setup**



### **Measurement Setup**



### **Results In Vacuum**



### **Results of Pt In LXe**



- The previous study suggests that it may be due to differences in potential barriers and backscattering at the surface of electrode.
- QE in LXe and Vacuum are totally different, thus we will measure QE for all the materials in LXe and then find the best one.

### Summary & Prospect

#### Summary

- Ton-scale LXe TPCs have some problems originated from disconnection and sagging of electrodes.
- Reducing S2-only BGs is important to improve the sensitivity for low mass DM.
- Coated electrode with low QE is mechanically stable and possible to reduce such S2-only BGs.
- We have developed a dedicated system to measure QE in Vacuum, GXe and LXe to find a good material of electrodes.
  - QE (MgF2) < QE (SUS304) < QE (Au) < QE (Pt) in Vacuum</p>
  - QE (GXe) < QE (LXe) < QE (Vacuum) for Pt</p>

#### Prospect

We will measure QE for other electrode candidates (Au,AI+MgF2...) in LXe, and find the electrode with the lowest QE among them.

Finally, we will characterize the performances of selected electrodes with a LXe TPC.