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Liquid noble gas detectors are well-suited to the search for 
weakly interacting massive particles (WIMPs)
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https://xkcd.com/2035/

liquid noble gasses excel here



T. Pollmann, LIDINE 2022

Direct detection: the basic idea is elastic scattering between galactic DM and SM 
particles (atomic nuclei) in our detector.
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Direct detection: the basic idea is elastic scattering between galactic DM and SM 
particles (atomic nuclei) in our detector.

4

galactic DM 'mist' Earth
DM

nucleus
detection 
medium

Milky Way

recoil nucleus
ER 

<100 keV

DetectorDetector

detection 
medium



T. Pollmann, LIDINE 2022

Three main detector configurations for measuring these nuclear recoils are in use:
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Three main detector configurations for measuring these nuclear recoils are in use:
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And at least one newer idea using superfluid helium.
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18 27. Dark Matter

mass parameter space, above masses of 0.3 GeV.

Figure 27.1: Upper limits on the SI DM-nucleon cross section as a function of DM mass.

27.7 Astrophysical detection of dark matter
DM as a microscopic constituent can have measurable, macroscopic e�ects on astrophysical

systems. Indirect DM detection refers to the search for the annihilation or decay debris from DM
particles, resulting in detectable species, including especially gamma rays, neutrinos, and antimatter
particles. The production rate of such particles depends on (i) the annihilation (or decay) rate (ii)
the density of pairs (respectively, of individual particles) in the region of interest, and (iii) the
number of final-state particles produced in one annihilation (decay) event. In formulae, the rate
for production of a final state particle f per unit volume from DM annihilation can be cast as
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where È‡vÍ indicates the thermally-averaged cross section for DM annihilation times relative velocity
[27], calculated at the appropriate temperature, flDM is the physical density of DM, and N

A

f
is the

number of final state particles f produced in one individual annihilation event. The constant c

depends on whether the DM is its on antiparticle, in which case c = 1/2, or if there is a mixture of
DM particles and antiparticles (in case there is no asymmetry, c = 1/4). The analog for decay is
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with the same conventions for the symbols, and where ·DM is the DM’s lifetime.
Gamma Rays: DM annihilation to virtually any final state produces gamma rays: emis-

sion processes include the dominant two-photon decay mode of neutral pions resulting from the
hadronization of strongly-interacting final states; final state radiation; and internal bremsshtralung,
the latter two including, possibly, the emission of massive gauge or Higgs bosons subsequently pro-
ducing photons via their decay products. Similarly, neutrinos are produced from charged pion

1st June, 2020 8:29am
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No credible WIMP signal has been found so far.
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Based on: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

WIMPs

https://pdg.lbl.gov/2020/html/authors_2020.html
https://academic.oup.com/ptep/article/2020/8/083C01/5891211
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We want to extend the sensitivity of the detectors into the neutrino fog
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Two neutrino-fog-penetrating detectors (plus SBC for lower 
mass WIMPs) are planned:
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GADMC XLZD

XENON + LZ + DARWINDEAP + DarkSide + ArDM + CLEAN
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Argo DARWIN

(new name TBD)
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And for both detectors, a science programme beyond WIMPs 
is foreseen (making lemonade out of the neutrino-lemons).
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arXiv:2203.02309

Physics reach of XLZD detector.
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For WIMPs (and some neutrino channels), the signal rate is highest at low recoil 
energies, where few quanta are produced.
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Several talks here will report on recent developments in efficient means of 
detecting small amounts of light, electrons, and heat coming from large detectors
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The overall event rate is small, and backgrounds render some 
of the parameter space inaccessible.
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Self-shielding of the liquid noble gases + position reconstruction allows 
fiducialization against external backgrounds.
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In LXe, purification of the Xe from radioactive contaminants is 
crucial
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The remaining ER background can be reduced by ~4 orders of magnitude 
through discrimination based on the ionisation/scintillation ratio.
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The ionization and scintillation yields as function of drift field, event energy, 
and event type are crucial inputs for design and analysis of the detectors
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In argon detectors, Ar-39 depleted argon (underground argon) is necessary.
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arXiv:2203.02309 http://arxiv.org/abs/2103.12202
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The remaining Ar-39 ER background can be reduced by ~8 
orders of magnitude (per keV) through PSD
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Argon

http://arxiv.org/abs/2103.12202
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PSD power must be predicted/evaluated accurately over 8-9 
orders of magnitude
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To get the expected background levels as low as shown here, 
extensive measures were taken.
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Shielding against cosmic rays includes going to deep underground laboratories and 
placing detectors in several layers of additional active and passive shielding.

24

(C) Gerry KingsleySNOLAB access drift

Gran Sasso lab schematic

XENONnT shield tank

DOI: 10.5772/intechopen.76853
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All materials used to build the detector are screened for radioactive contaminants, and 
custom made if necessary. Detectors are large construction projects in clean-rooms.
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Noble gases are purified in systems specialized in removal of radioisotopes. 
Argon procurement from depleted underground sources ongoing.

26

cryogenic distillation column for separation of Rn 
from Xe, and Rn-free pump system underground argon distillation 

column



T. Pollmann, LIDINE 2022

Instrumental backgrounds are not accounted for in sensitivity projections, but 
are important considerations in upscaling efforts.
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➡ "lone electron" emission

➡ nuisance fluorescence
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Long-term stability is crucial to acquire enough exposure
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➡ photon/electron yield stability

➡ ageing of light detection system

➡ hot spots, flashes
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Upscaling current detectors is conceptionally straight forward, 
but presents technological challenges
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GADMC XLZD
~300 tonnes liquid argon ~40 tonnes liquid xenon

2.6 m

2.6 m

6 m

6 m

6 m

Argo DARWIN

(new name TBD)

➡ large-area photon detection while keeping dark noise low

➡ large-area wavelength-shifters

➡ drift field instrumentation and mechanical stability

➡ procurement/availability of underground argon

➡ procurement of xenon
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Summary
30
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• Upscaling LAr and LXe-based WIMP detectors is the fastest path toward the 
neutrino fog in a wide range of WIMP masses.


• Novel detector ideas (bubble chamber, superfluid He detector) offer further 
redundancy and extended reach.


• Continued R&D into read-out of low-intensity scintillation, ionisation, and heat 
remains crucial to enabling the upscaling.


• Improved understanding of liquid noble gas properties is likewise necessary to 
ensure success of the experimental program.


